cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A383075 Smallest number m such that m*(m + 1)*(2*m + 1)/6 is divisible by n.

Original entry on oeis.org

1, 3, 4, 7, 2, 4, 3, 15, 13, 4, 5, 8, 6, 3, 4, 31, 8, 27, 9, 7, 13, 11, 11, 31, 12, 12, 40, 7, 14, 4, 15, 63, 22, 8, 7, 40, 18, 19, 13, 15, 20, 27, 21, 16, 27, 11, 23, 31, 24, 12, 8, 32, 26, 40, 5, 31, 9, 28, 29, 40, 30, 15, 13, 127, 12, 27, 33, 8, 22, 7, 35
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 15 2025

Keywords

Comments

m*(m + 1)*(2*m + 1)/6 is divisible by n if and only if m*(m + 1)*(2*m + 1) is divisible by 6*n. - David A. Corneth, Apr 21 2025
If n > 3 is a prime of the form (8*k + 3), then a(2*n) = n. - Ctibor O. Zizka, May 21 2025

Examples

			n = 2: smallest m such that m*(m + 1)*(2*m + 1) is divisible by 2*6 is m = 3.
a(4) = 7. The first few numbers of the form m*(m + 1)*(2*m + 1)/6, m >= 1 are 1, 5, 14, 30, 55, 91, 140,... The first 6 are not divisible by 4 but the seventh is. - _David A. Corneth_, Apr 21 2025
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{m=1},While[!Divisible[m(m+1)(2m+1)/6,n], m++]; m]; Array[a,71] (* Stefano Spezia, Apr 15 2025 *)
  • PARI
    a(n) = my(m=1); while (m*(m+1)*(2*m+1)/6 % n, m++); m; \\ Michel Marcus, Apr 20 2025
    
  • PARI
    \\ See Corneth link
    
  • Python
    from itertools import count
    from sympy import integer_nthroot
    def A383075(n): return next(m for m in count(integer_nthroot(3*n,3)[0]) if not m*(m+1)*((m<<1)+1)%(6*n)) # Chai Wah Wu, Apr 21 2025

A022763 n-th 8k+3 prime plus n-th 8k+5 prime.

Original entry on oeis.org

8, 24, 48, 80, 112, 128, 184, 216, 280, 296, 336, 360, 408, 456, 520, 560, 600, 648, 696, 752, 808, 840, 888, 952, 1008, 1064, 1104, 1176, 1224, 1248, 1296, 1344, 1368, 1416, 1448, 1512, 1584, 1632, 1656, 1712, 1760, 1848, 1944, 1984, 2040
Offset: 1

Views

Author

Keywords

Programs

  • PARI
    lista(nn) = {prm = primes(nn); tp = select(p->(Mod(p,8)==3), prm); fp = select(p->(Mod(p, 8)==5), prm); for (i = 1, min(#tp, #fp), print1(tp[i] + fp[i], ", "););} \\ Michel Marcus, Sep 30 2013

Formula

a(n) = A007520(n) + A007521(n). - Michel Marcus, Sep 30 2013

A153236 Numbers n such that 8*n + 3 is not prime.

Original entry on oeis.org

3, 4, 6, 9, 11, 12, 14, 15, 18, 19, 21, 23, 24, 25, 27, 29, 30, 32, 33, 34, 36, 37, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 63, 64, 66, 67, 69, 72, 74, 75, 76, 78, 79, 81, 83, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Vincenzo Librandi, Dec 21 2008

Keywords

Examples

			Distribution of the terms in the following triangular array:
*;
*,*;
*,4,*;
3,*,*,*;
*,*,*,12,*;
*,*,11,*,*,*;
*,9,*,*,*,24,*;
6,*,*,*,23,*,*,*;
*,*,*,21,*,*,*,40,*;
*,*,18,*,*,*,39,*,*,*;
*,14,*,*,*,37,*,*,*,60,*;
9,*,*,*,34,*,*,*,59,*,*,*; etc.
where * marks the non-integer values of (2*h*k + k + h - 1)/4 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..110] | not IsPrime(8*n+3)]; // Vincenzo Librandi, Jan 12 2013
  • Mathematica
    Select[Range[0, 200], !PrimeQ[8 # + 3] &] (* Vincenzo Librandi, Jan 12 2013 *)

A163184 Primes of the form 8k + 1 dividing 2^j + 1 for some odd j.

Original entry on oeis.org

281, 617, 1033, 1049, 1097, 1193, 1481, 1553, 1753, 1777, 2281, 2393, 2473, 2657, 2833, 2857, 3049, 3529, 3673, 3833, 4049, 4153, 4217, 4273, 4457, 4937, 5113, 5297, 5881, 6121, 6449, 6481, 6521, 6529, 6569, 6761, 6793, 6841, 7121, 7129, 7481, 7577, 7817, 8081, 8233, 8537, 9001, 9137, 9209, 9241
Offset: 1

Views

Author

Christopher J. Smyth, Jul 22 2009

Keywords

Comments

Each term p has the form 2^r*j + 1, where r >= 3, j is odd, and ord_p(-2) divides j.

Examples

			281 is in the sequence as 281 = 2^3*35 + 1 and 281 | 2^35 + 1.
		

Crossrefs

Set difference of A163183 and A007520.

Programs

  • Maple
    with(numtheory):A:=NULL:p:=2: for c to 500 do p:=nextprime(p);if order(-2,p) mod 2=1 and p mod 8 = 1 then A:=A,p;;fi;od:A;

Extensions

More terms from Max Alekseyev, Sep 29 2016

A201719 Primes of the form x^2 + 2y^2 such that y^2 + 2x^2 is also prime.

Original entry on oeis.org

11, 19, 43, 59, 67, 83, 107, 139, 163, 179, 211, 251, 307, 331, 419, 443, 467, 491, 563, 571, 587, 619, 643, 811, 883, 907, 947, 971, 1019, 1091, 1123, 1171, 1259, 1291, 1307, 1427, 1531, 1571, 1579, 1667, 1699, 1747, 1787, 1811, 1907, 1979, 1987, 2003, 2011
Offset: 1

Views

Author

Zak Seidov, Dec 04 2011

Keywords

Comments

All terms == 3 mod 8 (cf. A007520).

Examples

			Corresponding pairs of primes:
(a(1),a(2))=(11,19): 11=3^2+2*1^2, 19=1^2+2*3^2
(a(3),a(4))=(43,59): 43=5^2+2*3^2, 59=3^2+2*5^2
(a(5),a(7))=(67,107): 67=7^2+2*3^2, 107=3^2+2*7^2.
		

Crossrefs

Cf. A154777.

Programs

  • Mathematica
    With[{nn=50},Take[Union[Flatten[Select[{#[[1]]^2+2#[[2]]^2,2#[[1]]^2+ #[[2]]^2}&/@Subsets[Range[nn],{2}],And@@PrimeQ[#]&]]],nn]] (* Harvey P. Dale, Sep 15 2013 *)

A294993 Numbers n > 1 such that all of 2^(n-1), 3^(n-1), 5^(n-1), (2*n-1)*(2^((n-1)/2)), 4*ceiling((3/4)*n)-2, and (2^((n+1)/2) + floor(n/4)*2^((n+3)/2)) are congruent to 1 (mod n).

Original entry on oeis.org

11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1051, 1091, 1123, 1163, 1171, 1187, 1259, 1283
Offset: 1

Views

Author

Jonas Kaiser, Nov 12 2017

Keywords

Comments

It appears that A007520 is a subsequence. Up to 10^7 there are no composites in this sequence.
The first composite is a(17465859) = 1397357851; there are probably infinitely many. - Charles R Greathouse IV, Nov 12 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1300], Function[n, AllTrue[Join[Prime[Range@3]^(n - 1), {(2 n - 1) (2^((n - 1)/2)), 4 Ceiling[3 n/4] - 2, (2^((n + 1)/2) + Floor[n/4]*2^((n + 3)/2))}], Mod[#, n] == 1 &]]] (* Michael De Vlieger, Nov 15 2017 *)
  • PARI
    is(n) = n%2 && Mod(2, n)^(n-1)==1 && Mod(3, n)^(n-1)==1 && Mod(5, n)^(n-1)==1 && (2*n-1)*Mod(2, n)^((n-1)/2)== 1 && Mod(4*ceil((3/4)*n)-2, n)==1 && Mod(2, n)^((n+1)/2)+floor(n/4)*Mod(2, n)^((n+3)/2)==1

A346400 Composite numbers k such that the numerator of the harmonic mean of the divisors of k is equal to k.

Original entry on oeis.org

20, 21, 22, 27, 35, 38, 39, 45, 49, 55, 56, 57, 65, 68, 77, 85, 86, 93, 99, 110, 111, 115, 116, 118, 119, 125, 129, 133, 134, 143, 147, 150, 155, 161, 164, 166, 169, 183, 184, 185, 187, 189, 201, 203, 205, 207, 209, 212, 214, 215, 217, 219, 221, 235, 237, 245
Offset: 1

Views

Author

Amiram Eldar, Nov 01 2021

Keywords

Comments

Composite numbers k such that A099377(k) = k.
Since the harmonic mean of the divisors of an odd prime p is p/((p+1)/2), its numerator is equal to p. Therefore, this sequence is restricted to composite numbers.
This sequence is infinite. For example, if p is a prime of the form 8*k+3 (A007520) with k>1, then 2*p is a term.

Examples

			20 is a term since the harmonic mean of the divisors of 20 is 20/7.
		

Crossrefs

Intersection of A002808 and A250094.

Programs

  • Mathematica
    q[n_] := CompositeQ[n] && Numerator[DivisorSigma[0, n]/DivisorSigma[-1, n]] == n; Select[Range[250], q]
  • PARI
    isok(k) = my(d=divisors(k)); (#d>2) && (numerator(#d/sum(i=1, #d, 1/d[i])) == k); \\ Michel Marcus, Nov 01 2021
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=20,lim\1, if(vecsum(n[2][,2])>1 && numerator(sigma(n,0)/sigma(n,-1))==n[1], listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 01 2021

A022764 (n-th 8k+3 prime plus n-th 8k+5 prime)/8.

Original entry on oeis.org

1, 3, 6, 10, 14, 16, 23, 27, 35, 37, 42, 45, 51, 57, 65, 70, 75, 81, 87, 94, 101, 105, 111, 119, 126, 133, 138, 147, 153, 156, 162, 168, 171, 177, 181, 189, 198, 204, 207, 214, 220, 231, 243, 248, 255, 264, 270, 277, 284, 286, 296, 309, 314, 316
Offset: 1

Views

Author

Keywords

Programs

  • PARI
    lista(nn) = {prm = primes(nn); tp = select(p->(Mod(p,8)==3), prm); fp = select(p->(Mod(p, 8)==5), prm); for (i = 1, min(#tp, #fp), print1((tp[i] + fp[i])/8, ", "););} \\ Michel Marcus, Sep 30 2013

Formula

a(n) = (A007520(n) + A007521(n))/8 = A022763(n)/8. - Michel Marcus, Sep 30 2013

A035198 From a Dirichlet series.

Original entry on oeis.org

1, 9, 17, 25, 41, 73, 81, 89, 97, 113, 121, 137, 153, 169, 193, 225, 233, 241, 257, 281, 289, 313, 337, 353, 361, 369, 401, 409, 425, 433, 449, 457, 521, 569, 577, 593, 601, 617, 625, 641, 657, 673, 697, 729, 761, 769, 801, 809, 841, 857, 873, 881, 929, 937
Offset: 0

Views

Author

Keywords

Comments

Contribution from R. J. Mathar, Jul 16 2010: (Start)
The Dirichlet function is (z_1(s))^2*z_3(2*s)*z_5(2*s) = 1+ 2/9^s+4/17^s+2/25^s+4/41^s+..,
where z_1(s) = prod_{p in A007519} Zeta(s,p) = 1+2/17^s+2/41^s+2/73^s+ ...(see A004625),
z_3(s) = prod_{p in A007520} Zeta(s,p) = 1+2/3^s+2/9^s+2/11^s+2/19^s+2/27^s+4/33^s+..,
z_5(s) = prod_{p in A007521} Zeta(s,p) = 1+2/5^s+2/13^s+...+4/65^s+2/101^s+..., Zeta(s,p)=(1+p^(-s))/(1-p^(-s)). (End)

Extensions

More terms from R. J. Mathar, Jul 16 2010
More terms from Sean A. Irvine, Sep 29 2020

A100876 Least number of squares that sum to prime(n).

Original entry on oeis.org

2, 3, 2, 4, 3, 2, 2, 3, 4, 2, 4, 2, 2, 3, 4, 2, 3, 2, 3, 4, 2, 4, 3, 2, 2, 2, 4, 3, 2, 2, 4, 3, 2, 3, 2, 4, 2, 3, 4, 2, 3, 2, 4, 2, 2, 4, 3, 4, 3, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 2, 3, 2, 3, 4, 2, 2, 3, 2, 3, 2, 2, 4, 4, 2, 3, 4, 2, 2, 2, 2, 3, 2, 4, 2, 4, 3, 2, 2, 2, 4, 3, 4, 4, 3, 3, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 09 2005

Keywords

Comments

Note that a(n) <= 4 by Lagrange's four-square theorem. - T. D. Noe, Jan 10 2005
Primes 2 and 4k+1 (A002313) require only 2 positive squares; primes 8k+3 (A007520) require 3 positive squares; primes 8k+7 (A007522) require 4 positive squares.

Examples

			a(2)=3 because 3=1^2+1^2+1^2;
a(3)=2 because 5=1^2+2^2;
a(4)=4 because 7=2^2+1^2+1^2+1^2.
		

Crossrefs

Cf. A002828 (least number of squares needed to represent n).

Programs

  • Mathematica
    SquareCnt[n_] := If[SquaresR[1, n] > 0, 1, If[SquaresR[2, n] > 0, 2, If[SquaresR[3, n] > 0, 3, 4]]]; Table[p = Prime[n]; SquareCnt[p], {n, 150}] (* T. D. Noe, Jan 10 2005, revised Sep 27 2011 *)

Formula

a(n) = A002828(prime(n)) - T. D. Noe, Jan 10 2005

Extensions

More terms from T. D. Noe, Jan 10 2005
Previous Showing 41-50 of 51 results. Next