cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A097656 Binomial transform of A038507.

Original entry on oeis.org

2, 4, 9, 24, 81, 358, 2021, 13828, 109857, 986922, 9865125, 108507160, 1302065441, 16926805678, 236975181189, 3554627504844, 56874039618753, 966858672535762, 17403456103546565, 330665665962928288, 6613313319249128577
Offset: 0

Views

Author

Ross La Haye, Sep 20 2004

Keywords

Examples

			a(2) = 9 because P(2,0) = 1, P(2,1) = 2, P(2,2) = 2 while C(2,0) = 1, C(2,1) = 2, C(2,2) = 1 and 1 + 1 + 2 + 2 + 2 + 1 = 9.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[n!(k! + 1)/(k!(n - k)!), {k, 0, n}]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Sep 24 2004 *)

Formula

a(n) = Sum_{k=0..n} n!*(k!+1) / (k!*(n-k)!) = Sum_{k=0..n} (P(n, k) + C(n, k)) = Sum_{k=0..n} P(n, k) + 2^n = A007526(n) + A000079(n). - Ross La Haye, Aug 24 2006

A097967 a(n) = Sum_{k=1..n} (P(n,k) + C(n,k)).

Original entry on oeis.org

0, 2, 7, 22, 79, 356, 2019, 13826, 109855, 986920, 9865123, 108507158, 1302065439, 16926805676, 236975181187, 3554627504842, 56874039618751, 966858672535760, 17403456103546563, 330665665962928286, 6613313319249128575
Offset: 0

Views

Author

Ross La Haye, Sep 21 2004

Keywords

Examples

			a(2) = 7 because P(2,1) = 2, P(2,2) = 2 while C(2,1)= 2, C(2,2) = 1 and 2 + 2 + 2 + 1 = 7.
		

Crossrefs

Programs

  • Maple
    A097967 := proc(n)
        add(n!*(k!+1)/k!/(n-k)!,k=1..n) ;
    end proc: # R. J. Mathar, May 29 2013
  • Mathematica
    f[n_] := Sum[n!(k! + 1)/(k!(n - k)!), {k, n}]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Sep 24 2004 *)

Formula

a(n) = Sum_{k=1..n} n!(k!+1) / k!(n-k)! = Sum_{k=1..n} P(n, k)+2^n-1 = A007526(n) - A000225(n) - 1 = A097656(n) - 2.
Conjecture: a(n) +(-n-6)*a(n-1) +(6*n+7)*a(n-2) +(-13*n+14)*a(n-3) +4*(3*n-8)*a(n-4) +4*(-n+4)*a(n-5)=0. - R. J. Mathar, May 29 2013

Extensions

Edited by Robert G. Wilson v, Sep 24 2004

A154987 Triangle read by rows: T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*(n!/k!)*(2*(n + k) - 1).

Original entry on oeis.org

-2, 4, 4, 13, 20, 13, 41, 69, 69, 41, 183, 268, 264, 268, 183, 1099, 1405, 1080, 1080, 1405, 1099, 7943, 9486, 5970, 4080, 5970, 9486, 7943, 65547, 75775, 43806, 20370, 20370, 43806, 75775, 65547, 604831, 685672, 384552, 149520, 77280, 149520, 384552, 685672, 604831
Offset: 0

Views

Author

Roger L. Bagula, Jan 18 2009

Keywords

Examples

			     -2;
      4,     4;
     13,    20,    13;
     41,    69,    69,    41;
    183,   268,   264,   268,   183;
   1099,  1405,  1080,  1080,  1405,  1099;
   7943,  9486,  5970,  4080,  5970,  9486,  7943;
  65547, 75775, 43806, 20370, 20370, 43806, 75775, 65547;
  ...
		

Programs

  • Maple
    t:= proc(n,k) option remember; ## simplified t;
    2*(n+k-1/2)*(n!/k!);
    end proc:
    A154987:= proc(n,k) ## n >= 0 and k = 0 .. n
    t(n,k) + t(n,n-k)
    end proc: # Yu-Sheng Chang, Apr 13 2020
  • Mathematica
    (* First program *)
    t[n_, k_]:= 2*n!*Gamma[n+k+1/2]/(k!*Gamma[n+k-1/2]);
    T[n_, k_]:= t[n, k] + t[n,n-k];
    Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten
    (* Second Program *)
    T[n_, k_]:= Binomial[n, k]*((n-k)!*(2*n+2*k-1) + k!*(4*n-2*k-1));
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 28 2020 *)
  • Sage
    def T(n, k): return binomial(n, k)*(factorial(n-k)*(2*n+2*k-1) + factorial(k)*(4*n-2*k-1))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 28 2020

Formula

T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*n!*Gamma(n + k + 1/2)/(k!*Gamma(n + k - 1/2)).
T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*(n+k-1/2)*(n!/k!). - Yu-Sheng Chang, Apr 13 2020
From G. C. Greubel, May 28 2020: (Start)
T(n,k) = binomial(n,k)*( (2*n+2*k-1)*(n-k)! + (4*n-2*k-1)*k! ).
T(n,n-k) = T(n,k), for k >= 0.
Sum_{k=0..n} T(n,k) = 2*( 2*n-1 + (2*n+1)*n!*e_{n-1}(1) ), where e_{n}(x) is the finite exponential function = Sum_{k=0..n} x^k/k!.
Sum_{k=0..n} T(n,k) = 2*( 2*n-1 + (2*n+1)*A007526(n) ).
T(n,0) = A175925(n-1) + 2*n.
T(n,1) = A007680(n) + A001107(n). (End)

Extensions

Partially edited by Andrew Howroyd, Mar 26 2020
Additionally edited by G. C. Greubel, May 28 2020

A328290 Table T(b,n) = #{ k > 0 | nk has only distinct and nonzero digits in base b }, b >= 2, 1 <= n <= A051846(b).

Original entry on oeis.org

1, 4, 1, 0, 0, 1, 0, 1, 15, 5, 9, 0, 2, 3, 2, 0, 4, 1, 1, 0, 2, 1, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 64, 42, 21, 9, 0, 14, 8, 4, 7, 0, 6, 4, 3, 6, 0, 3, 2, 5, 2, 0, 4, 5, 3, 2, 0, 0, 2, 1, 2, 0, 2, 1, 2, 1, 0, 1, 2, 1, 2, 0, 1, 3, 1, 1, 0, 1, 1, 2, 1, 0, 0, 0, 0, 2
Offset: 2

Views

Author

M. F. Hasler, Oct 11 2019

Keywords

Comments

The table could also be considered as an infinite square array with T(b,n) = 0 for n > A051846(b) = the largest pandigital number in base b.
Can anyone find a simple formula for the index of the last terms > 1 in each row b?

Examples

			The table reads:  (column n >= 2 corresponds to the base)
   B \ n = 1      2      3      4      5      6      7     8      9      10  ...
   2       1     (0 ...)
   3       4      1      0      0      1      0      1    (0 ...)
   4      15      5      9      0      2      3      2     0      4       1  ...
   5      64     42     21      9      0     14      8     4      7       0  ...
   6     325    130     65     65    161      0     48    23     32      66  ...
   7    1956    651   1140    319    386    221      0   156    362     128  ...
   8   13699   5871   4506   1957   2748   1944   6277     0   1470    1189  ...
   9  109600  73588  27400  56930  21973  18397  15641  8305      0   14826  ...
  10  986409 438404 572175 219202 109601 255752 140515 109601 432645     0   ...
  (...)
In base 2, 1 is the only number with distinct nonzero digits, so T(2,1) = 1, T(2,n) = 0 for n > 1.
In base 3, {1, 2, 12_3 = 5, 21_3 = 7} are the only numbers with distinct nonzero digits, so T(3,1) = 4, T(3,2) = T(3,7) = T(3,7) = 1, T(3,n) = 0 for n > 7.
In base 4, {1, 2, 3, 12_4 = 6, 13_4 = 7, 21_4 = 9, ..., 321_4 = 57} are the only numbers with distinct nonzero digits, so T(4,n) = 0 for n > 57.
		

Crossrefs

Cf. A328287 (row 10), A328288, A328277.
Column 1 is A007526 (number of nonnull variations of n distinct objects).

Programs

  • PARI
    T(B,n)={my(S,T,U); for(L=1,B-1,T=vectorv(L,k,B^(k-1)); forperm(L,p, U=vecextract(T,p); forvec(D=vector(L,i,[1,B-1]),D*U%n||S++,2)));S}

Formula

T(b,b) = 0, since any multiple of b has a trailing digit 0 in base b.
T(b,A051846(b)) = 1 and T(b,n) = 0 for n > A051846(b) = (b-1)(b-2)..21 in base b.

A331798 E.g.f.: -log(1 - x) / ((1 - x) * (1 + log(1 - x))).

Original entry on oeis.org

0, 1, 5, 29, 204, 1714, 16862, 190826, 2447512, 35136696, 558727872, 9754239648, 185546362416, 3820734689472, 84687887312688, 2010622152615504, 50908186083448320, 1369376758488222336, 38998680958184088960, 1172297572938013827456, 37092793335394301708544
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 26 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[-Log[1 - x]/((1 - x) (1 + Log[1 - x])), {x, 0, nmax}], x] Range[0, nmax]!
    A007526[n_] := n! Sum[1/k!, {k, 0, n - 1}]; a[n_] := Sum[Abs[StirlingS1[n, k]] A007526[k], {k, 0, n}]; Table[a[n], {n, 0, 20}]
    A007840[n_] := Sum[Abs[StirlingS1[n, k]] k!, {k, 0, n}]; a[n_] := Sum[Binomial[n, k] k! HarmonicNumber[k] A007840[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} = |Stirling1(n,k)| * A007526(k).
a(n) = Sum_{k=1..n} binomial(n,k) * k! * H(k) * A007840(n-k), where H(k) is the k-th harmonic number.
a(n) ~ n! / (1 - exp(-1))^(n+1). - Vaclav Kotesovec, Jan 26 2020

A348312 a(n) = n! * Sum_{k=0..n-1} 3^k / k!.

Original entry on oeis.org

0, 1, 8, 51, 312, 1965, 13248, 97839, 800208, 7260921, 72806040, 801515979, 9620317512, 125071036389, 1751016829968, 26265324194055, 420245416687392, 7144172815479921, 128595113003161512, 2443307154421058019, 48866143111666389720, 1026189005418216656541, 22576158119430894214368
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[3^k/k!, {k, 0, n - 1}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[x Exp[3 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n!*sum(k=0, n-1, 3^k/k!); \\ Michel Marcus, Oct 11 2021

Formula

E.g.f.: x * exp(3*x) / (1 - x).
a(0) = 0; a(n) = n * (a(n-1) + 3^(n-1)).
a(n) ~ exp(3)*n!. - Stefano Spezia, Oct 11 2021

A348314 a(n) = n! * Sum_{k=0..n-1} 4^k / k!.

Original entry on oeis.org

0, 1, 10, 78, 568, 4120, 30864, 244720, 2088832, 19389312, 196514560, 2173194496, 26128665600, 339890756608, 4759410116608, 71395178280960, 1142340032364544, 19419853564641280, 349557673401188352, 6641597100292636672, 132831947503410872320, 2789470920661372502016
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[4^k/k!, {k, 0, n - 1}], {n, 0, 21}]
    nmax = 21; CoefficientList[Series[x Exp[4 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n!*sum(k=0, n-1, 4^k/k!); \\ Michel Marcus, Oct 11 2021

Formula

E.g.f.: x * exp(4*x) / (1 - x).
a(0) = 0; a(n) = n * (a(n-1) + 4^(n-1)).
a(n) ~ exp(4)*n!. - Stefano Spezia, Oct 11 2021

A367962 Triangle read by rows. T(n, k) = Sum_{j=0..k} (n!/j!).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 12, 15, 16, 24, 48, 60, 64, 65, 120, 240, 300, 320, 325, 326, 720, 1440, 1800, 1920, 1950, 1956, 1957, 5040, 10080, 12600, 13440, 13650, 13692, 13699, 13700, 40320, 80640, 100800, 107520, 109200, 109536, 109592, 109600, 109601
Offset: 0

Views

Author

Peter Luschny, Dec 06 2023

Keywords

Examples

			  [0]   1;
  [1]   1,    2;
  [2]   2,    4,    5;
  [3]   6,   12,   15,   16;
  [4]  24,   48,   60,   64,   65;
  [5] 120,  240,  300,  320,  325,  326;
  [6] 720, 1440, 1800, 1920, 1950, 1956, 1957;
		

Crossrefs

Cf. A094587, A000142 (T(n, 0)), A052849 (T(n, 1)), A000522 (T(n, n)), A007526 (T(n,n-1)), A038154 (T(n, n-2)), A355268 (T(n, n/2)), A367963(n) (T(2*n, n)/n!).
Cf. A001339 (row sums), A087208 (alternating row sums), A082030 (accumulated sums), A053482, A331689.

Programs

  • Maple
    T := (n, k) -> add(n!/j!, j = 0..k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    Module[{n=1},NestList[Append[n#,1+Last[#]n++]&,{1},10]] (* or *)
    Table[Sum[n!/j!,{j,0,k}],{n,0,10},{k,0,n}] (* Paolo Xausa, Dec 07 2023 *)
  • Python
    from functools import cache
    @cache
    def a_row(n: int) -> list[int]:
        if n == 0: return [1]
        row = a_row(n - 1) + [0]
        for k in range(n): row[k] *= n
        row[n] = row[n - 1] + 1
        return row
  • SageMath
    def T(n, k): return sum(falling_factorial(n, n - j) for j in range(k + 1))
    for n in range(9): print([T(n, k) for k in range(n + 1)])
    

Formula

T(n, k) = A094587(n, k) * A000522(k).
T(n, k) = e * (n! / k!) * Gamma(k + 1, 1).
Sum_{k=0..n} T(n, k) * 2^(n - k) = A053482(n).
Sum_{k=0..n} T(n, k) * binomial(n, k) = A331689(n).
Recurrence: T(n, n) = T(n, n-1) + 1 starting with T(0, 0) = 1.
For k <> n: T(n, k) = n * T(n-1, k).

A381888 Triangle read by rows: T(n, k) = (n + 1) * Sum_{j=k..n} binomial(n, j) * Eulerian1(j, j - k).

Original entry on oeis.org

1, 2, 2, 3, 9, 3, 4, 28, 28, 4, 5, 75, 165, 75, 5, 6, 186, 786, 786, 186, 6, 7, 441, 3311, 6181, 3311, 441, 7, 8, 1016, 12888, 40888, 40888, 12888, 1016, 8, 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9, 10, 5110, 168670, 1312750, 3445510, 3445510, 1312750, 168670, 5110, 10
Offset: 0

Views

Author

Peter Luschny, Mar 11 2025

Keywords

Comments

Consider A381706, the number of permutations of k chosen numbers in [n] with i-1 descents, as a sequence of squares of size 1x1, 2x2, 3x3, ..., as displayed in the example section of A381706. Conjecture: T(n, k) is the sum of column k+1 of the (n+1)th square; in other words: T(n, k) = Sum_{j=0..n} b(n+1, j+1, k+1).

Examples

			Triangle starts:
  [0] 1;
  [1] 2,    2;
  [2] 3,    9,     3;
  [3] 4,   28,    28,      4;
  [4] 5,   75,   165,     75,      5;
  [5] 6,  186,   786,    786,    186,      6;
  [6] 7,  441,  3311,   6181,   3311,    441,     7;
  [7] 8, 1016, 12888,  40888,  40888,  12888,  1016,    8;
  [8] 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9;
		

Crossrefs

Cf. A046802, A173018 (Eulerian1), A122045 (Euler), A058877 (column 1), A007526 (row sums), A381706 (generalized Eulerian).

Programs

  • Maple
    T := (n, k) -> (n + 1)*add(binomial(n, j)*combinat:-eulerian1(j, j - k), j = k .. n):
    for n from 0 to 8 do seq(T(n, k), k=0..n) od;
    # Using the e.g.f.:
    egf := ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1))))/(exp(x*(y - 1)) - y)^2:
    ser := simplify(series(egf, x, 10)):
    seq(seq(n!*coeff(coeff(ser, x, n), y, k), k = 0..n), n = 0..9);
  • SageMath
    # Using function eulerian1 from A173018.
    def T(n: int, k: int) -> int:
        return (n + 1) * sum(binomial(n, j) * eulerian1(j, j-k) for j in (k..n))
    def Trow(n) -> list[int]: return [T(n, k) for k in (0..n)]
    for n in (0..8): print(f"{n}: ", Trow(n))

Formula

T(n, k) = n! * [y^k] [x^n] ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1)))) / (exp(x*(y - 1)) - y)^2.
Sum_{k=0..n} (-1)^k * T(n, k) = (-1)^n * (n + 1) * Euler(n).
T(n, k) = (n + 1) * A046802(n, k).

A081114 Triangle read by rows: T(n,k) = n*T(n-1,k) + n - k starting at T(n,n)=0.

Original entry on oeis.org

0, 1, 0, 4, 1, 0, 15, 5, 1, 0, 64, 23, 6, 1, 0, 325, 119, 33, 7, 1, 0, 1956, 719, 202, 45, 8, 1, 0, 13699, 5039, 1419, 319, 59, 9, 1, 0, 109600, 40319, 11358, 2557, 476, 75, 10, 1, 0, 986409, 362879, 102229, 23019, 4289, 679, 93, 11, 1, 0, 9864100, 3628799, 1022298, 230197, 42896, 6795, 934, 113, 12, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Apr 16 2003

Keywords

Comments

Taking the triangle into negative values of n and k would produce results close to (k+1)*e*n! - 1, i.e., one less than multiples of A000522 for nonnegative n.

Examples

			Triangle begins
    0;
    1,   0;
    4,   1,  0;
   15,   5,  1, 0;
   64,  23,  6, 1, 0;
  325, 119, 33, 7, 1, 0;
		

Crossrefs

Columns include A007526 and A033312.

Programs

  • PARI
    T(n,k) = if (k==n, 0, n*T(n-1,k) + n - k);
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print(););} \\ Michel Marcus, Jun 16 2019

Formula

For k > 0, T(n, k) = ceiling((A001339(k-1)/(k-1)! - (k-1)*e) *n! - 1) where A001339(k-1) = ceiling((k-1)!*(k-1)*e) for k > 1.
T(n, 0) = floor(e*n! - 1) for n > 0; T(n, 1) = n! - 1. T(n, n)=0; T(n, n-1) = n+2; T(n, n-2) = n^2 + 3*n + 5 = A027688(n+1).

Extensions

More terms from Michel Marcus, Jun 16 2019
Previous Showing 41-50 of 53 results. Next