cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A164864 Number of ways of placing n labeled balls into 10 indistinguishable boxes; word structures of length n using a 10-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213530, 27641927, 190829797, 1381367941, 10448276360, 82285618467, 672294831619, 5676711562593, 49344452550230, 439841775811967, 4005444732928641, 37136385907400125, 349459367068932740
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2009

Keywords

Crossrefs

Programs

  • Maple
    # First program:
    a:= n-> ceil(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800): seq(a(n), n=0..25);
    # second program:
    a:= n-> add(Stirling2(n, k), k=0..10): seq(a(n), n=0..25);
  • Mathematica
    Table[Sum[StirlingS2[n,k],{k,0,10}],{n,0,30}] (* Harvey P. Dale, Nov 22 2023 *)

Formula

a(n) = Sum_{k=0..10} Stirling2 (n,k).
a(n) = ceiling(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800).
G.f.: (148329*x^9 -613453*x^8 +855652*x^7 -596229*x^6 +240065*x^5 -59410*x^4 +9177*x^3 -862*x^2 +45*x-1) / ((10*x-1) *(8*x-1) *(7*x-1) *(6*x-1) *(5*x-1) *(4*x-1) *(3*x-1) *(2*x-1) *(x-1)).
a(n) <= A000110(n) with equality only for n <= 10.

A124303 Number of set partitions of length <= 4; sum of first 4 columns of triangle of Stirling numbers of 2nd kind; dimension of space of symmetric polynomials in 4 noncommuting variables.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 187, 715, 2795, 11051, 43947, 175275, 700075, 2798251, 11188907, 44747435, 178973355, 715860651, 2863377067, 11453377195, 45813246635, 183252462251, 733008800427, 2932033104555, 11728128223915, 46912504507051, 187650001250987
Offset: 0

Views

Author

Mike Zabrocki, Oct 25 2006

Keywords

Comments

Apart from initial term, same as A007581. - Valery A. Liskovets, Nov 16 2006

Examples

			Number of set partitions of {1,2,3,4,5,6} are given by A008277(6,k) = 1, 31, 90, 65, 15, 1 and hence a(6) = 1+31+90+65 = 187.
		

Crossrefs

A row of the array in A278984.

Programs

  • Maple
    a:=proc(n); if n<4 then [1,1,2,5][n+1]; else 7*a(n-1)-14*a(n-2)+8*a(n-3); fi; end:
  • Mathematica
    Join[{1}, LinearRecurrence[{7, -14, 8}, {1, 2, 5}, 26]] (* Jean-François Alcover, Nov 20 2017 *)
    Table[Sum[StirlingS2[n,k],{k,0,4}],{n,0,40}] (* Robert A. Russell, Mar 29 2018 *)
  • PARI
    Vec((1 - 6*x + 9*x^2 - 3*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Nov 03 2017

Formula

O.g.f.: (3*q^3 - 9*q^2 + 6*q - 1)/(8*q^3 - 14*q^2 + 7*q - 1) = Sum_{k=0..4} (q^k/Product_{i=1..k} (1-i*q)).
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3); a(0) = 1, a(1) = 1, a(2) = 2, a(3) = 5, a(n) = Sum_{k=1..4} A008277(n,k).
a(n) = (8 + 3*2^(1+n) + 4^n) / 24 for n>0. - Colin Barker, Nov 03 2017
a(n) = Sum_{k=0..4} Stirling2(n,k). - Robert A. Russell, Mar 29 2018
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=4. - Robert A. Russell, Apr 25 2018
E.g.f.: (9 + 8*exp(x) + 6*exp(2*x) + exp(4*x))/24. - Peter Luschny, Nov 06 2018

A241328 T(n,k)=Number of nXk 0..3 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 1, 2, 2, 8, 5, 5, 59, 85, 15, 14, 530, 2344, 1030, 51, 41, 4877, 68935, 95144, 13011, 187, 122, 45057, 2034543, 8949808, 3875244, 165924, 715, 365, 416533, 60066019, 842185933, 1162535788, 157912026, 2121033, 2795, 1094, 3851085, 1773370241
Offset: 1

Views

Author

R. H. Hardin, Apr 19 2014

Keywords

Comments

Table starts
...1.......1..........2..............5................14....................41
...2.......8.........59............530..............4877.................45057
...5......85.......2344..........68935...........2034543..............60066019
..15....1030......95144........8949808.........842185933...........79254376889
..51...13011....3875244.....1162535788......348722168314.......104609549355169
.187..165924..157912026...151022716125...144410575985227....138095118530911728
.715.2121033.6435036610.19619065042282.59802363257355728.182299462522915741748

Examples

			Some solutions for n=3 k=4
..0..1..0..1....0..1..2..1....0..1..2..1....0..1..0..2....0..1..0..1
..1..0..1..2....1..0..2..3....0..2..3..0....1..2..0..1....2..0..3..2
..1..0..3..0....0..2..0..1....1..3..2..3....3..2..1..3....3..1..2..0
		

Crossrefs

Column 1 is A007581(n-1)
Row 1 is A007051(n-2)

Formula

Empirical for column k:
k=1: a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)
k=2: [order 9] for n>10
k=3: [order 15]
k=4: [order 53]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2) for n>3
n=2: a(n) = 12*a(n-1) -26*a(n-2) +2*a(n-3) +28*a(n-4) -6*a(n-5) -9*a(n-6) for n>8
n=3: [order 11] for n>13
n=4: [order 36] for n>38

A222878 T(n,k)=Number of nXk 0..3 arrays with no more than floor(nXk/2) elements equal to at least one horizontal or antidiagonal neighbor, with new values introduced in row major 0..3 order.

Original entry on oeis.org

1, 1, 2, 2, 11, 5, 11, 122, 131, 15, 34, 1814, 6282, 2150, 51, 131, 26311, 409775, 443510, 32491, 187, 438, 399849, 19707855, 95867967, 23794078, 533186, 715, 2150, 6013669, 1340197778, 20978414941, 22794825314, 1698174722, 8362152, 2795, 7676
Offset: 1

Views

Author

R. H. Hardin Mar 08 2013

Keywords

Comments

Table starts
.....1..........1...............2...................11......................34
.....2.........11.............122.................1814...................26311
.....5........131............6282...............409775................19707855
....15.......2150..........443510.............95867967.............20978414941
....51......32491........23794078..........22794825314..........16473931317022
...187.....533186......1698174722........5472896849943.......17791003053622809
...715....8362152.....93656293632.....1322676376672081....14337592109053271558
..2795..135650378...6637413406814...321195816580955511.15577784123509878927189
.11051.2155759835.372075279639542.78284744747263499257

Examples

			Some solutions for n=3 k=4
..0..0..0..1....0..0..1..0....0..0..1..2....0..1..0..1....0..1..0..2
..2..3..1..2....0..2..2..3....1..3..1..0....0..2..2..2....1..0..1..3
..0..2..3..0....0..3..2..1....1..2..0..2....1..0..0..0....2..0..2..1
		

Crossrefs

Column 1 is A007581(n-1)
Row 1 is A222650

A028401 The (2^n+1)-th triangular number (cf. A000217).

Original entry on oeis.org

3, 6, 15, 45, 153, 561, 2145, 8385, 33153, 131841, 525825, 2100225, 8394753, 33566721, 134242305, 536920065, 2147581953, 8590131201, 34360131585, 137439739905, 549757386753, 2199026401281, 8796099313665, 35184384671745
Offset: 2

Views

Author

Keywords

Comments

Number of types of Boolean functions of n variables under a certain group.
Also the number of ordered decompositions of 2^n into 3 nonnegative integers (e.g., 2 = 0+0+2 = 0+2+0 = 2+0+0 = 1+1+0 = 1+0+1 = 0+1+1). - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Aug 02 2007

Crossrefs

Equals 2*A036562(n-4) - 1, n > 3.
Cf. A000217.

Programs

  • Mathematica
    Drop[#, 2] &@ CoefficientList[Series[3 x^2*(1 - 5 x + 5 x^2)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 25}], x] (* Michael De Vlieger, Jul 08 2019 *)
  • Python
    def A028401(n): return ((m:=1<2 else 3 # Chai Wah Wu, Jul 11 2024

Formula

From Ralf Stephan, Aug 23 2003: (Start)
a(n) = (3/8)*2^n + (1/32)*4^n + 1.
a(n) = 3*A007581(n-2) = (3/4)*A060919(n-1). (End)
a(n) = (2^n+4)*(2^n+8)/32. - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Aug 02 2007
G.f.: 3*x^2*(1-5*x+5*x^2)/((1-x)*(1-2*x)*(1-4*x)). - Colin Barker, Mar 09 2012
a(n) = a(n-1) + 3*A000217(2^(n-3)) for n > 2. - Daniel Poveda Parrilla, Dec 27 2016
E.g.f.: (32*exp(x) + 12*exp(2*x) + exp(4*x) - 45 - 60*x)/32. - Stefano Spezia, Jul 11 2024

Extensions

More terms from Vladeta Jovovic, Feb 24 2000
Simpler definition from Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Aug 02 2007

A200801 T(n,k) is the number of n X k 0..3 arrays with values 0..3 introduced in row major order and each element equal to no more than two horizontal and vertical neighbors.

Original entry on oeis.org

1, 2, 2, 5, 15, 5, 15, 178, 178, 15, 51, 2614, 9880, 2614, 51, 187, 40148, 583813, 583813, 40148, 187, 715, 622645, 34679839, 132636590, 34679839, 622645, 715, 2795, 9676364, 2060918000, 30147154218, 30147154218, 2060918000, 9676364, 2795
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2011

Keywords

Examples

			Table starts:
.....1...........2.................5......................15
.....2..........15...............178....................2614
.....5.........178..............9880..................583813
....15........2614............583813...............132636590
....51.......40148..........34679839.............30147154218
...187......622645........2060918000...........6852264918471
...715.....9676364......122478253815........1557479347400065
..2795...150442627.....7278777317468......354005859128023982
.11051..2339207390...432571571252989....80463441477635545163
.43947.36372631268.25707362563355693.18288865135614195620421
...
Some solutions for n=5 and k=3:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0
..2..0..0....0..1..1....0..0..2....2..2..0....2..2..0....2..2..0....2..1..2
..2..3..3....1..0..2....3..1..0....1..1..1....3..2..2....0..0..1....0..1..3
..2..2..0....3..2..1....3..3..0....2..2..1....3..1..3....1..1..1....1..1..2
		

Crossrefs

Main diagonal is A200794.
Columns 1..7 are A007581(n-1), A200795, A200796, A200797, A200798, A200799, A200780.

A203647 T(n,k) = number of arrays of n 0..k integers with new values introduced in order 0..k but otherwise unconstrained. Array read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 5, 8, 1, 2, 5, 14, 16, 1, 2, 5, 15, 41, 32, 1, 2, 5, 15, 51, 122, 64, 1, 2, 5, 15, 52, 187, 365, 128, 1, 2, 5, 15, 52, 202, 715, 1094, 256, 1, 2, 5, 15, 52, 203, 855, 2795, 3281, 512, 1, 2, 5, 15, 52, 203, 876, 3845, 11051, 9842, 1024, 1, 2, 5, 15, 52, 203, 877
Offset: 1

Views

Author

R. H. Hardin, Jan 04 2012

Keywords

Comments

Table starts
....1.....1......1......1......1......1......1......1......1......1......1
....2.....2......2......2......2......2......2......2......2......2......2
....4.....5......5......5......5......5......5......5......5......5......5
....8....14.....15.....15.....15.....15.....15.....15.....15.....15.....15
...16....41.....51.....52.....52.....52.....52.....52.....52.....52.....52
...32...122....187....202....203....203....203....203....203....203....203
...64...365....715....855....876....877....877....877....877....877....877
..128..1094...2795...3845...4111...4139...4140...4140...4140...4140...4140
..256..3281..11051..18002..20648..21110..21146..21147..21147..21147..21147
..512..9842..43947..86472.109299.115179.115929.115974.115975.115975.115975
.1024.29525.175275.422005.601492.665479.677359.678514.678569.678570.678570
Lower left triangular part seems to be A102661. - R. J. Mathar, Nov 29 2015

Examples

			Some solutions for n=7, k=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....1....1....1....1....0....0....1....1....1....1....1....1....1....1
..1....0....2....1....2....2....1....1....2....2....2....2....1....2....1....2
..0....1....1....0....3....3....2....2....1....3....1....1....1....0....0....2
..0....0....3....1....0....4....3....0....2....3....1....1....1....0....2....1
..2....2....4....2....2....0....4....2....0....2....2....3....2....3....2....0
..1....3....1....0....2....5....0....0....0....0....0....2....2....1....1....1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A007051(n-1).
Column 3 is A007581(n-1).
Column 4 is A056272.
Column 5 is A056273.
Column 6 is A099262.
Column 7 is A099263.
Column 8 is A164863.
Column 9 is A164864.
Column 10 is A203641.
Column 11 is A203642.
Column 12 is A203643.
Column 13 is A203644.
Column 14 is A203645.
Column 15 is A203646.
Diagonal is A000110.

Programs

  • Maple
    T:= proc(n,k) option remember;  if k = 1 then 2^(n-1)
    else 1 + add(binomial(n-1,j-1)*procname(n-j,k-1),j=1..n-1)
    fi
    end proc:
    seq(seq(T(k,m-k),k=1..m-1),m=2..10); # Robert Israel, May 20 2016
  • Mathematica
    T[n_, k_] := Sum[StirlingS2[n, j], {j, 1, k+1}]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)

Formula

T(n,k) = Sum_{j = 1..k+1} Stirling2(n,j). - Andrew Howroyd, Mar 19 2017
T(n,k) = A278984(k+1, n). - Andrew Howroyd, Mar 19 2017
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -3*a(n-2)
k=3: a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)
k=4: a(n) = 11*a(n-1) -41*a(n-2) +61*a(n-3) -30*a(n-4)
k=5: a(n) = 16*a(n-1) -95*a(n-2) +260*a(n-3) -324*a(n-4) +144*a(n-5)
k=6: a(n) = 22*a(n-1) -190*a(n-2) +820*a(n-3) -1849*a(n-4) +2038*a(n-5) -840*a(n-6)
k=7: a(n) = 29*a(n-1) -343*a(n-2) +2135*a(n-3) -7504*a(n-4) +14756*a(n-5) -14832*a(n-6) +5760*a(n-7)
k=8: a(n) = 37*a(n-1) -574*a(n-2) +4858*a(n-3) -24409*a(n-4) +74053*a(n-5) -131256*a(n-6) +122652*a(n-7) -45360*a(n-8)
k=9: a(n) = 46*a(n-1) -906*a(n-2) +9996*a(n-3) -67809*a(n-4) +291774*a(n-5) -790964*a(n-6) +1290824*a(n-7) -1136160*a(n-8) +403200*a(n-9)
k=10: a(n) = 56*a(n-1) -1365*a(n-2) +19020*a(n-3) -167223*a(n-4) +965328*a(n-5) -3686255*a(n-6) +9133180*a(n-7) -13926276*a(n-8) +11655216*a(n-9) -3991680*a(n-10)
k=11: a(n) = 67*a(n-1) -1980*a(n-2) +33990*a(n-3) -375573*a(n-4) +2795331*a(n-5) -14241590*a(n-6) +49412660*a(n-7) -113667576*a(n-8) +163671552*a(n-9) -131172480*a(n-10) +43545600*a(n-11)
k=12: a(n) = 79*a(n-1) -2783*a(n-2) +57695*a(n-3) -782133*a(n-4) +7284057*a(n-5) -47627789*a(n-6) +219409685*a(n-7) -703202566*a(n-8) +1519272964*a(n-9) -2082477528*a(n-10) +1606986720*a(n-11) -518918400*a(n-12)
k=13: a(n) = 92*a(n-1) -3809*a(n-2) +93808*a(n-3) -1530243*a(n-4) +17419116*a(n-5) -141963107*a(n-6) +835933384*a(n-7) -3542188936*a(n-8) +10614910592*a(n-9) -21727767984*a(n-10) +28528276608*a(n-11) -21289201920*a(n-12) +6706022400*a(n-13)
k=14: a(n) = 106*a(n-1) -5096*a(n-2) +147056*a(n-3) -2840838*a(n-4) +38786748*a(n-5) -385081268*a(n-6) +2816490248*a(n-7) -15200266081*a(n-8) +59999485546*a(n-9) -169679309436*a(n-10) +331303013496*a(n-11) -418753514880*a(n-12) +303268406400*a(n-13) -93405312000*a(n-14)
k=15: a(n) = 121*a(n-1) -6685*a(n-2) +223405*a(n-3) -5042947*a(n-4) +81308227*a(n-5) -965408015*a(n-6) +8576039615*a(n-7) -57312583328*a(n-8) +287212533608*a(n-9) -1066335473840*a(n-10) +2866534951280*a(n-11) -5367984964224*a(n-12) +6557974412544*a(n-13) -4622628648960*a(n-14) +1394852659200*a(n-15)
From Robert Israel, May 20 2016: (Start)
T(n,k) = 1 + Sum_{j=1..n-1} binomial(n-1,j-1)*T(n-j,k-1).
G.f. for columns g_k(z) satisfies g_k(z) = (z/(1-z))*(1+ g_{k-1}(z/(1-z))) with g_1(z) = z/(1-2z).
Thus g_k is a rational function: it has a simple pole at z=1/j for 1<=j<=k+1 except j=k, and it has a finite limit at infinity (so the degree of the numerator is k). This implies that column k satisfies the recurrences listed above, whose coefficients correspond to the expansion of (z-1/(k+1))* Product_{j=1..k-1}(z - 1/j).
(End)

A208353 T(n,k) is the number of n X k 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 2, 2, 5, 15, 5, 15, 100, 100, 15, 51, 868, 1095, 868, 51, 187, 7780, 12625, 12625, 7780, 187, 715, 69988, 153237, 230387, 153237, 69988, 715, 2795, 629860, 1901508, 4773885, 4773885, 1901508, 629860, 2795, 11051, 5668708, 23658861, 103672036
Offset: 1

Views

Author

R. H. Hardin, Feb 25 2012

Keywords

Examples

			Table starts:
....1.......2.........5..........15.............51............187
....2......15.......100.........868...........7780..........69988
....5.....100......1095.......12625.........153237........1901508
...15.....868.....12625......230387........4773885......103672036
...51....7780....153237.....4773885......191586797.....8045978096
..187...69988...1901508...103672036.....8045978096...647640659639
..715..629860..23658861..2280287753...340596199800.52428246114853
.2795.5668708.294608660.50481169071.14513602070899
Some solutions for n=4 and k=3:
..0..0..0....0..0..0....0..0..0....0..0..0....0..1..0....0..0..0....0..0..0
..1..0..1....1..1..1....1..2..1....1..1..1....1..2..2....1..1..1....1..0..1
..2..1..2....2..1..2....2..1..3....2..1..2....3..2..2....2..1..2....2..2..2
..1..2..1....3..2..3....0..0..1....0..2..0....1..3..0....3..2..0....1..2..3
		

Crossrefs

Main diagonal is A208346.
Columns 1..7 are A007581(n-1), A208347, A208348, A208349, A208350, A208351, A208352.

A222679 T(n,k)=Number of nXk 0..3 arrays with no more than floor(nXk/2) elements unequal to at least one horizontal, diagonal or antidiagonal neighbor, with new values introduced in row major 0..3 order.

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 4, 5, 5, 15, 5, 10, 11, 18, 51, 14, 25, 58, 130, 63, 187, 17, 150, 142, 527, 670, 234, 715, 75, 359, 2398, 5374, 8276, 9587, 1163, 2795, 95, 2249, 6463, 58167, 69973, 133028, 51055, 4953, 11051, 411, 6511, 146947, 687222, 1999404, 3759625
Offset: 1

Views

Author

R. H. Hardin Feb 28 2013

Keywords

Comments

Table starts
......1......1........1.........4..........5.........14.........17.........75
......2......1........5........10.........25........150........359.......2249
......5......5.......11........58........142.......2398.......6463.....146947
.....15.....18......130.......527.......5374......58167.....687222...11377192
.....51.....63......670......8276......69973....1999404...20997839.1097897602
....187....234.....9587....133028....3759625...96510910.3254033272
....715...1163....51055...2363628...65204276.5825299399
...2795...4953...832433..40206464.4282689196
..11051..24021..4403793.727306856
..43947.109395.76270010
.175275.536457
.700075

Examples

			Some solutions for n=3 k=4
..0..1..0..0....0..0..0..0....0..1..0..1....0..0..0..1....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..2....0..0..0..0
..0..0..0..0....0..1..0..0....0..0..0..0....0..0..0..1....0..0..1..1
		

Crossrefs

Column 1 is A007581(n-1)
Column 2 is A222373
Row 1 is A222372

A099262 a(n) = (1/5040)*7^n + (1/240)*5^n + (1/72)*4^n + (1/16)*3^n + (11/60)*2^n + 53/144. Partial sum of Stirling numbers of second kind S(n,i), i=1..7 (i.e., a(n) = Sum_{i=1..7} S(n,i)).

Original entry on oeis.org

1, 2, 5, 15, 52, 203, 877, 4139, 21110, 115179, 665479, 4030523, 25343488, 164029595, 1084948961, 7291973067, 49582466986, 339971207051, 2345048898523, 16244652278171, 112871151708404, 785938550025147, 5480960778389365, 38264428799608235, 267342497477336542, 1868866831126685483
Offset: 1

Views

Author

Nelma Moreira, Oct 10 2004

Keywords

Comments

Density of regular language L over {1,2,3,4,5,6,7} (i.e., number of strings of length n in L) described by regular expression with c=7: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*) where Sum stands for union and Product for concatenation.

Crossrefs

A row of the array in A278984.

Programs

  • Mathematica
    Table[Sum[StirlingS2[n, k], {k, 0, 7}], {n, 1, 30}] (* Robert A. Russell, Apr 25 2018 *)
  • PARI
    a(n) = (1/5040)*7^n + (1/240)*5^n + (1/72)*4^n + (1/16)*3^n + (11/60)*2^n + 53/144; \\ Altug Alkan, Apr 25 2018

Formula

For c=7, a(n) = (c^n)/c! + Sum_{k=1..c-2} ((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))) or = Sum_{k=1..c} (g(k, c)*k^n) where g(1, 1)=1, g(1, c) = g(1, c-1)+((-1)^(c-1))/(c-1)!, c > 1, g(k, c) = g(k-1, c-1)/k, for c > 1 and 2 <= k <= c.
G.f.: -x*(531*x^5-881*x^4+535*x^3-151*x^2+20*x-1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Dec 05 2012
a(n) = Sum_{k=0..7} Stirling2(n,k).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=7. - Robert A. Russell, Apr 25 2018

Extensions

More terms from Michel Marcus, Jan 05 2025
Previous Showing 11-20 of 40 results. Next