A239130
Smallest positive integer solution x = a(n) of (3^4)*x - 2^n*y = 1 for n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 17, 49, 49, 177, 177, 177, 177, 2225, 2225, 2225, 18609, 18609, 84145, 84145, 84145, 608433, 1657009, 1657009, 1657009, 1657009, 1657009, 1657009, 1657009, 135874737, 404310193, 941181105, 2014922929, 2014922929
Offset: 0
n=0: 81*1 - 1*80 = 1;
n=1: 81*1 - 2*40 = 1;
n=2: 81*1 - 4*20 = 1;
n=3: 81*1 - 8*10 = 1;
n=4: 81*1 - 16*5 = 1;
n=5: 81*17 - 32*5 =1; ...
-
[Floor(2^n*((41^(n+27) mod 81)/81))+1: n in [0..40]]; // Vincenzo Librandi, Mar 23 2014
-
Floor[Table[(2^n Mod[(41^(n + 27)), 81])/81 + 1, {n, 0, 40}]] (* Vincenzo Librandi, Mar 23 2014 *)
A321358
a(n) = (2*4^n + 7)/3.
Original entry on oeis.org
3, 5, 13, 45, 173, 685, 2733, 10925, 43693, 174765, 699053, 2796205, 11184813, 44739245, 178956973, 715827885, 2863311533, 11453246125, 45812984493, 183251937965, 733007751853, 2932031007405, 11728124029613, 46912496118445, 187649984473773, 750599937895085, 3002399751580333
Offset: 0
-
a[n_]:= (2*4^n + 7)/3; Array[a, 20, 0] (* or *)
CoefficientList[Series[1/3 (7 E^x + 2 E^(4 x)), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 10 2018 *)
-
a(n) = (2*4^n + 7)/3; \\ Michel Marcus, Nov 08 2018
-
Vec((3 - 10*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Nov 10 2018
A362783
Square array A(n,k) = (n^(2*k + 1) + 1)/(n + 1), n >= 0, k >= 0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 7, 1, 1, 1, 43, 61, 13, 1, 1, 1, 171, 547, 205, 21, 1, 1, 1, 683, 4921, 3277, 521, 31, 1, 1, 1, 2731, 44287, 52429, 13021, 1111, 43, 1, 1, 1, 10923, 398581, 838861, 325521, 39991, 2101, 57, 1, 1, 1, 43691, 3587227, 13421773, 8138021, 1439671
Offset: 0
Array begins:
=====================================================================
n/k | 0 1 2 3 4 5 6 ...
----+----------------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 ...
2 | 1 3 11 43 171 683 2731 ...
3 | 1 7 61 547 4921 44287 398581 ...
4 | 1 13 205 3277 52429 838861 13421773 ...
5 | 1 21 521 13021 325521 8138021 203450521 ...
6 | 1 31 1111 39991 1439671 51828151 1865813431 ...
...
-
/* as array */ [[&+[(-n)^j: j in [0..2*k]]: k in [0..6]]: n in [0..6]]; // Juri-Stepan Gerasimov, May 06 2023
-
A(n,k) = (n^(2*k + 1) + 1)/(n + 1) \\ Andrew Howroyd, May 03 2023
A377626
Cogrowth sequence of the 12-element group A4 = .
Original entry on oeis.org
1, 0, 1, 1, 1, 5, 4, 14, 21, 43, 91, 165, 354, 676, 1373, 2741, 5445, 10965, 21808, 43738, 87381, 174735, 349647, 698901, 1398318, 2796080, 5592445, 11185081, 22369145, 44740069, 89477724, 178957606, 357914197, 715826739, 1431658435, 2863308229, 5726626746
Offset: 0
a(6)=4 corresponds to the words SSSSSS = TTTTTT = STSTST = TSTSTS = 1.
A087449
a(n) = n * 4^(n-1) + (2*4^n + 1) / 3.
Original entry on oeis.org
1, 4, 19, 91, 427, 1963, 8875, 39595, 174763, 764587, 3320491, 14330539, 61516459, 262843051, 1118481067, 4742359723, 20043180715, 84467690155, 355050629803, 1488921995947, 6230565890731, 26021775190699, 108485147273899
Offset: 0
-
LinearRecurrence[{9,-24,16},{1,4,19},30] (* Harvey P. Dale, Apr 15 2018 *)
-
a(n) = my(p4 = 1<<(2*n)); n * p4 / 4 + (2*p4 + 1) / 3 \\ David A. Corneth, Apr 15 2018
A103279
Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].
Original entry on oeis.org
1, 1, 3, 1, 3, 8, 1, 3, 9, 22, 1, 3, 10, 27, 60, 1, 3, 11, 34, 81, 164, 1, 3, 12, 43, 116, 243, 448, 1, 3, 13, 54, 171, 396, 729, 1224, 1, 3, 14, 67, 252, 683, 1352, 2187, 3344, 1, 3, 15, 82, 365, 1188, 2731, 4616, 6561, 9136, 1, 3, 16, 99, 516, 2019, 5616, 10923, 15760
Offset: 0
Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005
Array begins:
1,3,8,22,60,164,448,1224,3344,9136,...
1,3,9,27,81,243,729,2187,6561,19683,...
1,3,10,34,116,396,1352,4616,15760,53808,...
1,3,11,43,171,683,2731,10923,43691,174763,...
1,3,12,54,252,1188,5616,26568,125712,594864,...
...
-
T11(N, n) = if(n==1,1,if(n==2,3,(N+2)*r1(N,n-1)-(2*N-2)*r1(N,n-2))) for(k=0,10,print1(k,": ");for(i=1,10,print1(T11(k,i),","));print())
Original entry on oeis.org
1, 3, 13, 11, 141, 43, 1485, 171, 15565, 683, 163021, 2731, 1707213, 10923, 17878221, 43691, 187223245, 174763, 1960627405, 699051, 20531956941, 2796203, 215013444813, 11184811, 2251650026701, 44739243, 23579585203405, 178956971, 246928622013645, 715827883, 2585870100909261, 2863311531
Offset: 3
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
-
LinearRecurrence[{0, 17, 0, -80, 0, 128, 0, -64}, {1, 3, 13, 11, 141, 43, 1485, 171}, 32] (* Jean-François Alcover, Oct 22 2019 *)
A113049
Triangle of sums of Jacobsthal numbers related to binomial(4n,n)/(3n+1) mod 4.
Original entry on oeis.org
3, 11, 13, 43, 45, 53, 171, 173, 181, 213, 683, 685, 693, 725, 853, 2731, 2733, 2741, 2773, 2901, 3413, 10923, 10925, 10933, 10965, 11093, 11605, 13653, 43691, 43693, 43701, 43733, 43861, 44373, 46421, 54613, 174763, 174765, 174773, 174805, 174933
Offset: 0
Rows begin
3;
11, 13;
43, 45, 53;
171, 173, 181, 213;
683, 685, 693, 725, 683;
2731,2733, 2741, 2773, 2901, 3413;
A165275
Table read by antidiagonals: T(n, k) is the k-th number with n-1 odd-power summands in its base 2 representation.
Original entry on oeis.org
1, 4, 2, 5, 3, 10, 16, 6, 11, 42, 17, 7, 14, 43, 170, 20, 8, 15, 46, 171, 682, 21, 9, 26, 47, 174, 683, 2730, 64, 12, 27, 58, 175, 686, 2731, 10922, 65, 13, 30, 59, 186, 687, 2734, 10923, 43690, 68, 18, 31, 62, 187, 698, 2735, 10926, 43691, 174762, 69, 19, 34
Offset: 1
Northwest corner:
1....4....5...16...17...20...21...64
2....3....6....7....8....9...12...13
10..11...14...26...27...30...31...34
42..43...46...47...58...59...62...63
Examples:
20 = 16 + 4 = 2^4 + 2^2, so that 20 is in row 0.
13 = 8 + 4 + 1 = 2^3 + 2^2 + 2^0, so that 13 is in row 1.
-
f[n_] := Total[(Reverse@IntegerDigits[n, 2])[[2 ;; -1 ;; 2]]]; T = GatherBy[ SortBy[Range[10^5], f], f]; Table[Table[T[[n - k + 1, k]], {k, n, 1, -1}], {n, 1, Length[T]}] // Flatten (* Amiram Eldar, Feb 04 2020*)
A210985
Number of segments needed to draw the toothpick structure of A139250 as it is after 2^n stages.
Original entry on oeis.org
1, 3, 7, 19, 63, 235, 919, 3651, 14575
Offset: 0
For n = 3, after 2^3 stages the toothpick structure of A139250 contains 43 toothpicks (A139250(2^3) = 43). However the toothpick structure can be essentially represented by 19 segments (A139252(2^3) = 19), so a(3) = 19.
Comments