cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 102 results. Next

A239130 Smallest positive integer solution x = a(n) of (3^4)*x - 2^n*y = 1 for n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 17, 49, 49, 177, 177, 177, 177, 2225, 2225, 2225, 18609, 18609, 84145, 84145, 84145, 608433, 1657009, 1657009, 1657009, 1657009, 1657009, 1657009, 1657009, 135874737, 404310193, 941181105, 2014922929, 2014922929
Offset: 0

Views

Author

Wolfdieter Lang, Mar 22 2014

Keywords

Comments

This is instance m=4 of the m-family of smallest positive solutions [x0(m,n), y0(m,n)] of 3^m*x - 2^n*y = 1, n >= 0, m >= 0, described in a comment on A239125.
The companion sequence is y(n) = y0(4, n) = A239131(n), which is periodic with period length phi(3^4) = 54, where phi(n) = A000010(n) (Euler's totient).
The G.f. can be found from that of the periodic sequence y(n).

Examples

			n=0: 81*1 - 1*80 = 1;
n=1: 81*1 - 2*40 = 1;
n=2: 81*1 - 4*20 = 1;
n=3: 81*1 - 8*10 = 1;
n=4: 81*1 - 16*5 = 1;
n=5: 81*17 - 32*5 =1; ...
		

Crossrefs

Cf. A000010, A007583 (m=1), A234038 (m=2), A239125 (m=3), A239131.

Programs

  • Magma
    [Floor(2^n*((41^(n+27) mod 81)/81))+1: n in [0..40]]; // Vincenzo Librandi, Mar 23 2014
  • Mathematica
    Floor[Table[(2^n Mod[(41^(n + 27)), 81])/81 + 1, {n, 0, 40}]] (* Vincenzo Librandi, Mar 23 2014 *)

Formula

a(n) = (1 + 2^n*y0(4, n))/3^4, with y0(4, n) == ((3^4+1)/2)^(n + 3^3) (mod 3^4) = A239131(n), n >= 0.
a(n + 54) = 2^(54)*a(n) - (2^(54)-1)/3^4, n >= 0, from the y0(4, n) periodicity.

A321358 a(n) = (2*4^n + 7)/3.

Original entry on oeis.org

3, 5, 13, 45, 173, 685, 2733, 10925, 43693, 174765, 699053, 2796205, 11184813, 44739245, 178956973, 715827885, 2863311533, 11453246125, 45812984493, 183251937965, 733007751853, 2932031007405, 11728124029613, 46912496118445, 187649984473773, 750599937895085, 3002399751580333
Offset: 0

Views

Author

Paul Curtz, Nov 07 2018

Keywords

Comments

Difference table:
3, 5, 13, 45, 173, 685, 2733, ... (this sequence)
2, 8, 32, 128, 512, 2048, 8192, ... A004171
6, 24, 96, 384, 1536, 6144, 24576, ... A002023

Crossrefs

Programs

  • Mathematica
    a[n_]:= (2*4^n + 7)/3; Array[a, 20, 0] (* or *)
    CoefficientList[Series[1/3 (7 E^x + 2 E^(4 x)), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 10 2018 *)
  • PARI
    a(n) = (2*4^n + 7)/3; \\ Michel Marcus, Nov 08 2018
    
  • PARI
    Vec((3 - 10*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Nov 10 2018

Formula

O.g.f.: (3 - 10*x) / ((1 - x)*(1 - 4*x)). - Colin Barker, Nov 10 2018
E.g.f.: (1/3)*(7*exp(x) + 2*exp(4*x)). - Stefano Spezia, Nov 10 2018
a(n) = 5*a(n-1) - 4*a(n-2), a(0) = 3, a(1) = 5.
a(n) = 4*a(n-1) - 7, a(0) = 3.
a(n) = (2/3)*(4^n-1)/3 + 3.
a(n) = A171382(2*n) = A155980(2*n+2).
a(n) = A193579(n)/3.
a(n) = A007583(n) + 2 = A001045(2*n+1) + 2.

Extensions

More terms from Michel Marcus, Nov 08 2018

A362783 Square array A(n,k) = (n^(2*k + 1) + 1)/(n + 1), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 7, 1, 1, 1, 43, 61, 13, 1, 1, 1, 171, 547, 205, 21, 1, 1, 1, 683, 4921, 3277, 521, 31, 1, 1, 1, 2731, 44287, 52429, 13021, 1111, 43, 1, 1, 1, 10923, 398581, 838861, 325521, 39991, 2101, 57, 1, 1, 1, 43691, 3587227, 13421773, 8138021, 1439671
Offset: 0

Views

Author

Juri-Stepan Gerasimov, May 03 2023

Keywords

Examples

			Array begins:
=====================================================================
n/k |  0    1      2       3         4          5            6   ...
----+----------------------------------------------------------------
0   |  1    1      1       1         1          1            1   ...
1   |  1    1      1       1         1          1            1   ...
2   |  1    3     11      43       171        683         2731   ...
3   |  1    7     61     547      4921      44287       398581   ...
4   |  1   13    205    3277     52429     838861     13421773   ...
5   |  1   21    521   13021    325521    8138021    203450521   ...
6   |  1   31   1111   39991   1439671   51828151   1865813431   ...
   ...
		

Crossrefs

Columns k=0..3 are A000012, A002061, A060884, A060888.
Rows n=2..4 are A007583, A066443, A299960.
Main diagonal is A179897.

Programs

  • Magma
    /* as array */ [[&+[(-n)^j: j in [0..2*k]]: k in [0..6]]: n in [0..6]]; // Juri-Stepan Gerasimov, May 06 2023
  • PARI
    A(n,k) = (n^(2*k + 1) + 1)/(n + 1) \\ Andrew Howroyd, May 03 2023
    

Formula

A(n,k) = Sum_{j=0..2*k} (-n)^j.

Extensions

a(49) corrected by Andrew Howroyd, Jan 20 2024

A377626 Cogrowth sequence of the 12-element group A4 = .

Original entry on oeis.org

1, 0, 1, 1, 1, 5, 4, 14, 21, 43, 91, 165, 354, 676, 1373, 2741, 5445, 10965, 21808, 43738, 87381, 174735, 349647, 698901, 1398318, 2796080, 5592445, 11185081, 22369145, 44740069, 89477724, 178957606, 357914197, 715826739, 1431658435, 2863308229, 5726626746
Offset: 0

Views

Author

Sean A. Irvine, Nov 02 2024

Keywords

Examples

			a(6)=4 corresponds to the words SSSSSS = TTTTTT = STSTST = TSTSTS = 1.
		

Crossrefs

Cf. A007583 (D6), A377627 (C6 x C2), A377656 (Dic2).

A087449 a(n) = n * 4^(n-1) + (2*4^n + 1) / 3.

Original entry on oeis.org

1, 4, 19, 91, 427, 1963, 8875, 39595, 174763, 764587, 3320491, 14330539, 61516459, 262843051, 1118481067, 4742359723, 20043180715, 84467690155, 355050629803, 1488921995947, 6230565890731, 26021775190699, 108485147273899
Offset: 0

Views

Author

Paul Barry, Sep 05 2003

Keywords

Comments

Binomial transform of A064017.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9,-24,16},{1,4,19},30] (* Harvey P. Dale, Apr 15 2018 *)
  • PARI
    a(n) = my(p4 = 1<<(2*n)); n * p4 / 4 + (2*p4 + 1) / 3 \\ David A. Corneth, Apr 15 2018

Formula

G.f.: (1-5x+7x^2)/((1-x)(1-4x)^2).
a(n) = A002697(n) + A007583(n).

Extensions

Name clarified by David A. Corneth, Apr 15 2018

A103279 Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].

Original entry on oeis.org

1, 1, 3, 1, 3, 8, 1, 3, 9, 22, 1, 3, 10, 27, 60, 1, 3, 11, 34, 81, 164, 1, 3, 12, 43, 116, 243, 448, 1, 3, 13, 54, 171, 396, 729, 1224, 1, 3, 14, 67, 252, 683, 1352, 2187, 3344, 1, 3, 15, 82, 365, 1188, 2731, 4616, 6561, 9136, 1, 3, 16, 99, 516, 2019, 5616, 10923, 15760
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005

Keywords

Comments

Consider the matrix M = [1,1,1;1,N,1;1,1,1]; Characteristic polynomial of M is x^3 + (-N - 2)*x^2 + (2*N - 2)*x.
Now (M^n)[1,1] is equivalent to the recursion a(1) = 1, a(2) = 3, a(n) = (N+2)a(n-1)+(2N-2)a(n-2). (This also holds for negative N and fractional N.)
a(n+1)/a(n) converges to the upper root of the characteristic polynomial ((N + 2) + sqrt((N - 2)^2 + 8))/2 for n to infinity.
Columns of array follow the polynomials:
1,
3,
N + 8,
N^2 + 4*N + 22,
N^3 + 4*N^2 + 16*N + 60,
N^4 + 4*N^3 + 18*N^2 + 56*N + 164,
N^5 + 4*N^4 + 20*N^3 + 68*N^2 + 188*N + 448,
N^6 + 4*N^5 + 22*N^4 + 80*N^3 + 248*N^2 + 608*N + 1224,
N^7 + 4*N^6 + 24*N^5 + 92*N^4 + 312*N^3 + 864*N^2 + 1920*N + 3344,
N^8 + 4*N^7 + 26*N^6 + 104*N^5 + 380*N^4 + 1152*N^3 + 2928*N^2 + 5952*N + 9136,
etc.

Examples

			Array begins:
1,3,8,22,60,164,448,1224,3344,9136,...
1,3,9,27,81,243,729,2187,6561,19683,...
1,3,10,34,116,396,1352,4616,15760,53808,...
1,3,11,43,171,683,2731,10923,43691,174763,...
1,3,12,54,252,1188,5616,26568,125712,594864,...
...
		

Crossrefs

Cf. A103280 (for (M^n)[1, 2]), A028859 (for N=0), A000244 (for N=1), A007052 (for N=2), A007583 (for N=3), A083881 (for N=4), A026581 (for N=-1), A026532 (for N=-2), A026568.

Programs

  • PARI
    T11(N, n) = if(n==1,1,if(n==2,3,(N+2)*r1(N,n-1)-(2*N-2)*r1(N,n-2))) for(k=0,10,print1(k,": ");for(i=1,10,print1(T11(k,i),","));print())

Formula

T(N, 1)=1, T(N, 2)=3, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).

A107733 Column 2 of the array in A107735.

Original entry on oeis.org

1, 3, 13, 11, 141, 43, 1485, 171, 15565, 683, 163021, 2731, 1707213, 10923, 17878221, 43691, 187223245, 174763, 1960627405, 699051, 20531956941, 2796203, 215013444813, 11184811, 2251650026701, 44739243, 23579585203405, 178956971, 246928622013645, 715827883, 2585870100909261, 2863311531
Offset: 3

Views

Author

N. J. A. Sloane, Jun 10 2005

Keywords

Comments

The second bisection [3, 11, 43, 171, 683, ...] is A007583. - Jean-François Alcover, Oct 22 2019 [noticed by Paul Curtz in a private e-mail].

References

  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 17, 0, -80, 0, 128, 0, -64}, {1, 3, 13, 11, 141, 43, 1485, 171}, 32] (* Jean-François Alcover, Oct 22 2019 *)

Formula

a(n) = 1 + Sum_{j=1..g} 2^(2j-1) if n = 2g+2, = 1 + 4 Sum_{j=1..g} C(2g+1, 2j) 5^(j-1) if n = 2g+1.
From Chai Wah Wu, Jun 19 2016: (Start)
a(n) = 17*a(n-2) - 80*a(n-4) + 128*a(n-6) - 64*a(n-8) for n > 10.
G.f.: x^3*(-64*x^7 + 96*x^5 - 40*x^3 - 4*x^2 + 3*x + 1)/(64*x^8 - 128*x^6 + 80*x^4 - 17*x^2 + 1). (End)

Extensions

More terms from Emeric Deutsch, Jun 22 2005

A113049 Triangle of sums of Jacobsthal numbers related to binomial(4n,n)/(3n+1) mod 4.

Original entry on oeis.org

3, 11, 13, 43, 45, 53, 171, 173, 181, 213, 683, 685, 693, 725, 853, 2731, 2733, 2741, 2773, 2901, 3413, 10923, 10925, 10933, 10965, 11093, 11605, 13653, 43691, 43693, 43701, 43733, 43861, 44373, 46421, 54613, 174763, 174765, 174773, 174805, 174933
Offset: 0

Views

Author

Paul Barry, Oct 11 2005

Keywords

Comments

First column is A007583(n+1). Main diagonal is A072197. Conjecture: A113048(n)=2 only if n=T(i,j).

Examples

			Rows begin
3;
11, 13;
43, 45, 53;
171, 173, 181, 213;
683, 685, 693, 725, 683;
2731,2733, 2741, 2773, 2901, 3413;
		

Formula

T(n, k)=if(k<=n, J(2n+3)+2J(2k), 0), J(n)=A001045(n).

A165275 Table read by antidiagonals: T(n, k) is the k-th number with n-1 odd-power summands in its base 2 representation.

Original entry on oeis.org

1, 4, 2, 5, 3, 10, 16, 6, 11, 42, 17, 7, 14, 43, 170, 20, 8, 15, 46, 171, 682, 21, 9, 26, 47, 174, 683, 2730, 64, 12, 27, 58, 175, 686, 2731, 10922, 65, 13, 30, 59, 186, 687, 2734, 10923, 43690, 68, 18, 31, 62, 187, 698, 2735, 10926, 43691, 174762, 69, 19, 34
Offset: 1

Views

Author

Clark Kimberling, Sep 12 2009

Keywords

Comments

For n>=0, row n is the ordered sequence of positive integers m such that the number of odd powers of 2 in the base 2 representation of m is n.
Every positive integer occurs exactly once in the array, so that as a sequence it is a permutation of the positive integers.
For even powers, see A165274. For the number of even powers of 2 in the base 2 representation of n, see A139351; for odd, see A139352.
Essentially, (Row 0)=A000695, (Column 1)=A020988, also possibly (Column 2)=A007583.
It appears that, for n>=3, a(t(n)) = 4*a(t(n-1))+2, where t(n) is the n-th triangular number t(n)=n(n+1)/2 (A000217). [John W. Layman, Sep 15 2009]

Examples

			Northwest corner:
  1....4....5...16...17...20...21...64
  2....3....6....7....8....9...12...13
  10..11...14...26...27...30...31...34
  42..43...46...47...58...59...62...63
Examples:
20 = 16 + 4 = 2^4 + 2^2, so that 20 is in row 0.
13 = 8 + 4 + 1 = 2^3 + 2^2 + 2^0, so that 13 is in row 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Total[(Reverse@IntegerDigits[n, 2])[[2 ;; -1 ;; 2]]]; T = GatherBy[ SortBy[Range[10^5], f], f]; Table[Table[T[[n - k + 1, k]], {k, n, 1, -1}], {n, 1, Length[T]}] // Flatten (* Amiram Eldar, Feb 04 2020*)

Extensions

a(27) corrected and a(28)-a(54) added by John W. Layman, Sep 15 2009
More terms from Amiram Eldar, Feb 04 2020

A210985 Number of segments needed to draw the toothpick structure of A139250 as it is after 2^n stages.

Original entry on oeis.org

1, 3, 7, 19, 63, 235, 919, 3651, 14575
Offset: 0

Views

Author

Omar E. Pol, Sep 11 2012

Keywords

Comments

It appears that this is also the partial sums of A039301.
It appears that this is also 1 together with A160128.

Examples

			For n = 3, after 2^3 stages the toothpick structure of A139250 contains 43 toothpicks (A139250(2^3) = 43). However the toothpick structure can be essentially represented by 19 segments (A139252(2^3) = 19), so a(3) = 19.
		

Crossrefs

Formula

a(n) = A139252(2^n).
Previous Showing 81-90 of 102 results. Next