cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A239566 (Round(c^prime(n)) - 1)/prime(n), where c is the heptanacci constant (A118428).

Original entry on oeis.org

7200, 25562, 332466, 16472758, 61145666, 3200477798, 45473543628, 172043098818, 2478186385762, 137291966046470, 7704742900338106, 29569459376703894, 1681851263230158754, 24987922624169214866, 96433670513455876108, 5566902760779797458210
Offset: 7

Views

Author

Keywords

Comments

For n>=7, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. In particular, all terms are even.

Crossrefs

Formula

All roots of the equation x^7-x^6-x^5-x^4-x^3-x^2-x-1 = 0
are the following: c=1.9919641966050350211,
-0.78418701799584451319 +/- 0.36004972226381653409*i,
-0.24065633852269642508 + /- 0.84919699909267892575*i,
0.52886125821602342773 +/- 0.76534196109589443115*i.
Absolute values of all roots, except for septanacci constant c, are less than 1.
Conjecture. Absolute values of all roots of the equation x^n - x^(n-1) - ... -x - 1 = 0, except for n-bonacci constant c_n, are less than 1. If the conjecture is valid, then for sufficiently large k=k(n), for all m>=k, we have round(c_n^prime(m)) == 1 (mod 2*prime(m)) (cf. Shevelev link).

A250407 Near-Wilson primes (p = prime(n) satisfying (p-1)! == -1-A250406(n)*p (mod p^2)) with A250406(n) < 10.

Original entry on oeis.org

2, 3, 5, 7, 13, 61, 71, 79, 157, 281, 563, 1277, 1777, 2339, 6311, 8233, 8543, 11047, 22907, 27689
Offset: 1

Views

Author

Felix Fröhlich, Nov 22 2014

Keywords

Comments

A250406(n) is essentially A007619(n) modulo A000040(n) (see Crandall et al. (1997), p. 442).

Crossrefs

Programs

  • PARI
    forprime(p=1, 1e9, for(b=0, 9, if(Mod((p-1)!, p^2)==-1-b*p, print1(p, ", "); break({1}))))

A134295 a(n) = Sum_{k=1..n} ((n-k)!*(k-1)! - (-1)^k).

Original entry on oeis.org

2, 2, 6, 16, 65, 312, 1813, 12288, 95617, 840960, 8254081, 89441280, 1060369921, 13649610240, 189550368001, 2824077312000, 44927447040001, 760034451456000, 13622700994560001, 257872110354432000, 5140559166898176001
Offset: 1

Views

Author

Alexander Adamchuk, Oct 17 2007

Keywords

Comments

According to the Generalized Wilson-Lagrange Theorem, a prime p divides (p-k)!*(k-1)! - (-1)^k for all integers k > 0. p divides a(p) for prime p. Quotients a(p)/p are listed in A134296(n) = {1, 2, 13, 259, 750371, 81566917, 2642791002353, 716984262871579, 102688143363690674087, ...}. p^2 divides a(p) for prime p = {7, 71}.

Crossrefs

Cf. A007540, A007619 (Wilson quotients: ((p-1)!+1)/p).
Cf. A134296 (quotients a(p)/p).

Programs

  • Mathematica
    Table[ Sum[ (n-k)!*(k-1)! - (-1)^k, {k,1,n} ], {n,1,30} ]

Formula

a(n) = Sum_{k=1..n} ((n-k)!*(k-1)! - (-1)^k).

A134296 Quotients A134295(p)/p = (1/p) * Sum_{k=1..p} ((p-k)!*(k-1)! - (-1)^k), where p = prime(n).

Original entry on oeis.org

1, 2, 13, 259, 750371, 81566917, 2642791002353, 716984262871579, 102688143363690674087, 21841112114495269555043222069, 17727866746681961093761724283871
Offset: 1

Views

Author

Alexander Adamchuk, Oct 17 2007

Keywords

Comments

A134295(n) = Sum_{k=1..n} ((n-k)!*(k-1)! - (-1)^k) = {2, 2, 6, 16, 65, 312, 1813, 12288, 95617, 840960, 8254081, ...}. According to the Generalized Wilson-Lagrange Theorem, a prime p divides (p-k)!*(k-1)! - (-1)^k for all integers k > 0. a(n) = A134295(p)/p for p = prime(n). a(n) is prime for n = {2, 3, 7, 9, 37, ...}. Corresponding prime terms in a(n) are {2, 13, 2642791002353, 102688143363690674087, ...}.

Crossrefs

Cf. A007540, A007619 (Wilson quotients: ((p-1)!+1)/p).
Cf. A134295 (Sum_{k=1..n} ((n-k)!*(k-1)! - (-1)^k)).

Programs

  • Mathematica
    Table[ (Sum[ (Prime[n]-k)!*(k-1)! - (-1)^k, {k,1,Prime[n]} ]) / Prime[n], {n,1,20} ]

Formula

a(n) = (1/p) * Sum_{k=1..p} ((p-k)!*(k-1)! - (-1)^k) where p = prime(n).

A238692 a(n) is the quotient of the sum of (not necessarily distinct) integers i!+(prime(n)-1)!/i!, i=1,2,...,prime(n)-2, which are divisible by prime(n), and prime(n).

Original entry on oeis.org

0, 1, 7, 139, 365641, 39916801, 1317933016441, 355688356705921, 53128667010491295649, 10888872347627347035630931201, 8841761993746245283777145088001, 10333147966386144929666651337523200000001
Offset: 1

Views

Author

Keywords

Comments

a(n) is prime for n = {3,4,5,6,7,31,738}; a(738) ~ 7.1 * 10^18518. There are no others for n up to 1000. - Peter J. C. Moses, Mar 03 2014

Examples

			Let n=4, prime(n)=7. Consider integers i!+6!/i!, i=1,2,3,4,5: 721,362,126,54,126. Among them 721,126,126 are divisible by 7. So a(4)=(721 + 126 + 126)/7 = 139.
		

Crossrefs

Programs

A261779 a(n) = ceiling((n-1)! / n).

Original entry on oeis.org

1, 1, 1, 2, 5, 20, 103, 630, 4480, 36288, 329891, 3326400, 36846277, 444787200, 5811886080, 81729648000, 1230752346353, 19760412672000, 336967037143579, 6082255020441600, 115852476579840000, 2322315553259520000, 48869596859895986087, 1077167364120207360000, 24817936069329577574400, 596585001666576384000000
Offset: 1

Views

Author

Keywords

Comments

Except for n = 4, this is ((n-1)!+1)/n for prime n, and (n-1)!/n otherwise.

Crossrefs

Cf. A007619 (prime index elements).

Programs

  • Mathematica
    Table[Ceiling[((n-1)!)/n],{n,30}] (* Harvey P. Dale, Oct 04 2018 *)
  • PARI
    a(n) = ceil((n-1)!/n)

A280300 Primes such that the Wilson quotient and the Fermat quotient satisfy 2*((p-1)!+1)/p +(2^(p-1)-1)/p == 0 (mod p).

Original entry on oeis.org

3, 9511, 13691
Offset: 1

Views

Author

René Gy, Dec 31 2016

Keywords

Comments

No new term less than 2000000. This sequence is included in A274994 because it can be shown that Sum_{k=1..(p-1)/2} (k^(p-2))*(k^(p-1)-1) == p*((2^(p-1)-1)/p)*(2*((p-1)!+1)/p +(2^(p-1)-1)/p) (mod p^2).

Crossrefs

A317507 Numbers k whose generalized Wilson quotient A157249(k) is prime.

Original entry on oeis.org

1, 5, 7, 8, 10, 11, 29, 62, 486, 614, 773, 1321, 1906, 2621
Offset: 1

Views

Author

Amiram Eldar, Sep 29 2018

Keywords

Comments

The corresponding primes are 2, 5, 103, 13, 19, 329891, ...
Supersequence of A050299 (except for 1, the prime terms of this sequence).
No more terms below 10^4.

Crossrefs

Programs

  • Mathematica
    p[n_] := Times @@ Select[Range[n], CoprimeQ[n, #] &]; e[1 | 2 | 4] = 1; e[n_] := (fi = FactorInteger[n]; If[MatchQ[fi, {{(p_)?OddQ, }} | {{2, 1}, {, }}], 1, -1]); a[n] := (p[n] + e[n])/n; n = 1; s={}; Do[If[PrimeQ[a[n]], AppendTo[s,n]], {n, 1, 1000}]; s (* after Jean-François Alcover at A157249 *)
  • PARI
    phito(n) = prod(k=2, n-1, k^(gcd(k, n)==1)); \\ A001783
    is(n) = if(n%2, isprimepower(n) || n==1, n==2 || n==4 || (isprimepower(n/2, &n) && n>2)); \\ A033948
    e(n) = if (is(n), 1, -1);
    gw(n) = (phito(n)+e(n))/n;
    isok(n) = isprime(gw(n)); \\ Michel Marcus, Oct 28 2018

A239640 a(n) is the smallest number such that for n-bonacci constant c_n satisfies round(c_n^prime(m)) == 1 (mod 2*p_m) for every m>=a(n).

Original entry on oeis.org

3, 3, 4, 5, 7, 7, 10, 13, 14, 14, 19, 23, 23, 31, 34, 34, 46, 50, 60, 65, 73, 79, 88, 92, 107, 113, 126, 139, 149, 168, 182, 198, 210, 227, 244, 265, 276, 292, 317, 340, 369, 384, 408, 436, 444, 480, 516, 540, 565, 606, 628, 669, 704, 735, 759, 810, 829, 895, 925
Offset: 2

Views

Author

Keywords

Comments

The n-bonacci constant is a unique root x_1>1 of the equation x^n-x^(n-1)-...-x-1=0. So, for n=2 we have Fibonacci constant phi or golden ratio (A001622); for n=3 we have tribonacci constant (A058265); for n=4 we have tetranacci constant (A086088), for n=5 (A103814), for n=6 (A118427), etc.

Examples

			Let n=2, then c_2 = phi (Fibonacci constant). We have round(c_2^2)=3 is not == 1 (mod 4), round(c_2^3)=4 is not == 1 (mod 6), while round(c_2^5)=11 == 1 (mod 10) and one can prove that for p>=5, we have round(c_2^p) == 1 (mod 2*p). Since 5=prime(3), then a(2)=3.
		

Crossrefs

A277167 Prime numbers p such that (-1)^h + (h!)^2 == 0 (mod p^2) where h = (p-1)/2.

Original entry on oeis.org

3, 11, 31, 47, 53
Offset: 1

Views

Author

René Gy, Oct 01 2016

Keywords

Comments

The above congruence is true modulo p for all odd primes. See A089043. But like for Wilson congruence, it is true modulo p^2, for a restricted number of primes. After 53, the next one (if any) seems very far away (>500000).
The fact that the congruence is true modulo p for all odd primes was proved by Lagrange in 1771. Using a theorem of Mathews (1892) and Eisenstein's logarithmetic rule for the Fermat quotient, the condition stated in the definition can be restated as W_p == -2q_p(2) (mod p), where W_p is the Wilson quotient of p (A007619) and q_p(2) is the Fermat quotient of p, base 2 (A007663). - John Blythe Dobson, Jul 31 2017

Examples

			(-1)^((11-1)/2)+(((11-1)/2)!)^2 = 14399 = 7*11^2*17.
		

References

  • Lagrange, "Démonstration d’un théoreme nouveau concernant les nombres premiers," Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres [de Berlin], année 1771 (published 1783), 125-137.
  • G. B. Mathews, Theory of Numbers, part 1 [all published] (Cambridge, 1892), 318.

Crossrefs

Programs

  • PARI
    lista(nn) = forprime(p=3, nn, if ((((-1)^((p-1)/2)+(((p-1)/2)!)^2) % p^2) == 0, print1(p, ", "))); \\ Michel Marcus, Oct 02 2016
Previous Showing 31-40 of 41 results. Next