cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A165234 Least prime p such that 2x^2 + p produces primes for x=0..n-1 and composite for x=n.

Original entry on oeis.org

2, 17, 3, 1481, 5, 149, 569, 2081, 2339, 5939831, 11, 33164857769, 3217755097229, 272259344081, 17762917045631
Offset: 1

Views

Author

T. D. Noe, Sep 09 2009

Keywords

Comments

Other known values: a(14)=272259344081 and a(29)=29. There are no other terms less than 10^12. The primes p = 3, 5, 11, and 29 produce p consecutive distinct primes because the imaginary quadratic field Q(sqrt(-2p)) has class number 2. Assuming the prime k-tuples conjecture, this sequence is defined for n>0.

References

  • Paulo Ribenboim, My Numbers, My Friends, Springer,2000, pp. 349-350.

Crossrefs

Programs

  • Mathematica
    PrimeRun[p_Integer] := Module[{k=0}, While[PrimeQ[2k^2+p], k++ ]; k]; nn=9; t=Table[0,{nn}]; cnt=0; p=1; While[cnt
    				
  • PARI
    isok(p, n) = for (k=0, n-1, if(!isprime(p + 2*k^2), return(0))); return(!isprime(p + 2*n^2));
    a(n) = forprime(p=2, oo, if(isok(p, n), return(p))); \\ Daniel Suteu, Dec 22 2024
    
  • Perl
    use ntheory qw(:all); sub a { my $n = $[0]; my $lo = 2; my $hi = 2*$lo; while (1) { my @terms = grep { !is_prime($ + 2*$n*$n) } sieve_prime_cluster($lo, $hi, map { 2*$*$ } 1 .. $n-1); return $terms[0] if @terms; $lo = $hi+1; $hi = 2*$lo; } }; $| = 1; for my $n (1..100) { print a($n), ", " } # Daniel Suteu, Dec 22 2024

Extensions

a(13) and a(15) from Daniel Suteu, Dec 22 2024

A241554 Semiprimes generated by the polynomial 2 * n^2 + 29.

Original entry on oeis.org

1711, 1829, 2077, 2479, 3071, 3901, 5029, 6527, 6757, 7471, 7967, 8479, 10397, 10981, 11581, 14141, 15167, 15517, 15871, 16591, 16957, 17701, 18079, 18847, 19631, 20837, 22927, 23791, 25567, 26941, 27877, 28829, 29797, 30287, 31279, 31781, 32287, 35941, 38117
Offset: 1

Views

Author

K. D. Bajpai, Apr 25 2014

Keywords

Comments

2 * n^2 + 29 is a well-known Legendre prime-producing polynomial which generates 29 distinct primes for n = 0, 1, ..., 28. For n = 29, it yields the first semiprime, 1711 = 29 * 59.
The number n = 185 is the least positive integer for which 2*n^2 + 29 = 68479 = 31 * 47 * 47 is not squarefree.

Examples

			2 * 30^2 + 29 = 1829 = 31 * 59, which is a semiprime and is a term.
2 * 35^2 + 29 = 2479 = 37 * 67, which is a semiprime and is a term.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A241554:= proc() local k; k:=2*x^2+29;if bigomega(k)=2 then RETURN (k); fi; end: seq(A241554(), x=0..500);
  • Mathematica
    A241554 = {}; Do[k = 2 * n^2 + 29; If[PrimeOmega[k] == 2, AppendTo[A241554, k]], {n,200}]; A241554
  • PARI
    s=[]; for(n=1, 200, t=2*n^2+29; if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 26 2014

A272077 Primes of the form abs(7*k^2 - 371*k + 4871) in order of increasing nonnegative values of k.

Original entry on oeis.org

4871, 4507, 4157, 3821, 3499, 3191, 2897, 2617, 2351, 2099, 1861, 1637, 1427, 1231, 1049, 881, 727, 587, 461, 349, 251, 167, 97, 41, 29, 43, 43, 29, 41, 97, 167, 251, 349, 461, 587, 727, 881, 1049, 1231, 1427, 1637, 1861, 2099, 2351, 2617, 2897, 3191
Offset: 1

Views

Author

Robert Price, Apr 19 2016

Keywords

Comments

For k=0 to 23, this expression generates 24 primes that decrease from 4871 to 41. It generates duplicates and the absolute value is used to avoid negative terms. The same 24 primes but in reverse order are generated in the same range of the argument by 7*k^2+49*k+41, which produces neither duplicates nor negative values and is one of relatively few quadratics with at most two-digit coefficients that generate at least 20 primes in a row. We have: 7*(n-30)^2 + 49*(n-30) + 41 = 7*n^2 - 371*n + 4871. - Waldemar Puszkarz, Feb 02 2018
See also A298078, the values of 7*n^2-7*n-43, which also contains the same 24 primes without duplicates. - N. J. A. Sloane, Mar 10 2018

Examples

			4157 is in this sequence since 7*2^2 - 371*2 + 4871 = 28-742-4871 = 4157 is prime.
		

Crossrefs

Programs

  • GAP
    Filtered(List([0..10^2],n->7*n^2-371*n+4871),IsPrime); # Muniru A Asiru, Feb 04 2018
  • Maple
    select(isprime, [seq(7*n^2-371*n+4871, n=0..10^2)]); # Muniru A Asiru, Feb 04 2018
  • Mathematica
    n = Range[0, 100]; Select[Abs[7n^2 - 371n + 4871], PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(p=abs(7*n^2-371*n+4871)), print1(p, ", "))); \\ Altug Alkan, Apr 19 2016
    

A272324 Primes of the form abs(82n^3 - 1228n^2 + 6130n - 5861) in order of increasing nonnegative n.

Original entry on oeis.org

5861, 877, 2143, 3691, 4259, 4339, 4423, 5003, 6571, 9619, 14639, 22123, 32563, 46451, 64279, 86539, 113723, 146323, 184831, 229739, 281539, 340723, 407783, 483211, 567499, 661139, 764623, 878443, 1003091, 1139059, 1286839, 1446923, 2005919, 2693363, 3229579
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Examples

			4259 is in this sequence since 82*4^3 - 1228*4^2 + 6130*4 - 5861 = 5248-19648+24520-5861 = 4259 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[82n^3 - 1228n^2 + 6130n - 5861, PrimeQ[#] &]

A272325 Nonnegative numbers n such that n^4 + 853n^3 + 2636n^2 + 3536n + 1753 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 30, 34, 37, 41, 43, 46, 50, 52, 53, 56, 59, 60, 61, 64, 66, 67, 68, 71, 76, 79, 81, 84, 87, 88, 89, 91, 92, 95, 96, 98, 99, 103, 106, 109, 118, 124, 126, 127, 128, 132
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Comments

21 is the smallest number not in this sequence.

Examples

			4 is in this sequence since 4^4 + 853*4^3 + 2636*4^2 + 3536*4 + 1753 = 256+54592+42176+14144+1753 = 112921 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[#^4 + 853#^3 + 2636#^2 + 3536# + 1753] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(n^4+853*n^3+2636*n^2+3536*n+1753), print1(n, ", "))); \\ Altug Alkan, Apr 25 2016

A272326 Primes of the form k^4 + 853*k^3 + 2636*k^2 + 3536*k + 1753 in order of increasing nonnegative k.

Original entry on oeis.org

1753, 8779, 26209, 59197, 112921, 192583, 303409, 450649, 639577, 875491, 1163713, 1509589, 1918489, 2395807, 2946961, 3577393, 4292569, 5097979, 5999137, 7001581, 8110873, 10672369, 15456403, 17324929, 19339909, 26321233, 38031841, 48822439, 66193219
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Examples

			112921 is in this sequence since 4^4 + 853*4^3 + 2636*4^2 + 3536*4 + 1753 = 256+54592+42176+14144+1753 = 112921 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[n^4 + 853n^3 + 2636n^2 + 3536n + 1753, PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(p=n^4+853*n^3+2636*n^2+3536*n+1753), print1(p, ", "))); \\ Altug Alkan, Apr 25 2016

A272554 Nonnegative numbers n such that abs(1/(36)(n^6 - 126n^5 + 6217n^4 - 153066n^3 + 1987786n^2 - 13055316n + 34747236)) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 73, 78
Offset: 1

Views

Author

Robert Price, May 02 2016

Keywords

Comments

55 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(1/(36)(4^6 - 126*4^5 + 6217*4^4 - 153066*4^3 + 1987786*4^2 - 13055316*4 + 34747236)) = abs((4096 - 129024 + 1591552 - 9796224 + 31804576 - 5222126 + 34747236)/36) = 166693 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[1/(36)(#^6 - 126#^5 + 6217#^4 - 153066#^3 + 1987786#^2 - 13055316# + 34747236)] &]

A272710 Primes of the form abs((1/4)*(n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) in order of increasing nonnegative n.

Original entry on oeis.org

1705829, 1313701, 991127, 729173, 519643, 355049, 228581, 134077, 65993, 19373, 10181, 26539, 33073, 32687, 27847, 20611, 12659, 5323, 383, 3733, 4259, 1721, 3923, 12547, 23887, 37571, 53149, 70123, 87977, 106207, 124351, 142019, 158923, 174907, 189977
Offset: 1

Views

Author

Robert Price, May 04 2016

Keywords

Examples

			519643 is in this sequence since abs(1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) = abs((1024 - 34048 + 430656 - 2534064 + 6881176 - 6823316)/4) = 519643 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316), PrimeQ[#] &]

A292578 Primes of the form 11*n^2 + 55*n + 43.

Original entry on oeis.org

43, 109, 197, 307, 439, 593, 769, 967, 1187, 1429, 1693, 1979, 2287, 2617, 2969, 3343, 3739, 4157, 4597, 5059, 6577, 7127, 7699, 8293, 9547, 10889, 11593, 14629, 15443, 17137, 18919, 19843, 20789, 21757, 24793, 25849, 26927, 28027, 30293, 32647, 33857, 35089
Offset: 1

Views

Author

Waldemar Puszkarz, Sep 19 2017

Keywords

Comments

The first 20 terms correspond to n from 0 to 19, which makes 11*n^2 + 55*n + 43 a prime-generating polynomial (see the link).
There are only a few prime-generating quadratic polynomials whose coefficients contain at most two digits that produce 20 or more primes in a row. This is one of them, others include A005846, A007641, A060844, and A007637.

Crossrefs

Cf. A000040, A005846, A007641, A060844, A007637 (similar sequences).

Programs

  • Maple
    select(isprime, [seq(11*n^2+55*n+43,n=0..100)]); # Robert Israel, Oct 01 2017
  • Mathematica
    Select[Range[0,100]//11#^2+55#+43 &, PrimeQ]
  • PARI
    for(n=0, 100, isprime(p=11*n^2+55*n+43)&& print1(p ", "))

A352800 Numbers k such that 2*k^2 + 29 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 73, 75, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Sean A. Irvine at the suggestion of Rémi Guillaume, Apr 03 2022

Keywords

Crossrefs

Cf. A007641.

Programs

  • Mathematica
    Select[Range[0, 32260], PrimeQ[2 #^2 + 29] &] (* Robert Price, Apr 15 2025 *)
Previous Showing 31-40 of 54 results. Next