A182312 Primes of the form a^2 + b^2 such that both a^2 + b^2 - a*b and a^2 + b^2 + a*b are prime.
5, 13, 37, 109, 193, 421, 457, 541, 613, 709, 757, 1033, 1117, 1201, 1549, 1597, 1621, 1789, 2137, 2293, 2377, 2437, 2797, 3061, 3109, 3313, 3361, 3469, 4153, 4621, 4657, 4729, 5077, 5233, 5569, 5653, 6421, 6469, 6637, 6997, 7417, 7561, 7681, 7753, 8101, 8689
Offset: 1
Keywords
Examples
The prime 13 = 2^2 + 3^2 is a term, since 13 - 2*3 = 7 is prime and 13 + 2*3 = 19 is prime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
prsQ[{a_,b_}]:=Module[{c=a^2+b^2,d=a*b},And@@PrimeQ[c+{0,d,-d}]]; Sort[#[[1]]^2+#[[2]]^2&/@Select[Subsets[Range[100],{2}],prsQ]] (* Harvey P. Dale, Apr 27 2014 *)
-
PARI
list(lim)=my(v=List(), t); for(a=1, sqrt(lim), forstep(b=1+a%2, min(a, sqrt(lim-a^2)), 2, if(isprime(t=a^2+b^2) && isprime(t-a*b) && isprime(t+a*b), listput(v, t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 25 2012
Formula
a(n) == 1 (mod 4). - Thomas Ordowski, Mar 13 2018
Extensions
a(6)-a(46) from Charles R Greathouse IV, Apr 25 2012
Comments