cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 87 results. Next

A182312 Primes of the form a^2 + b^2 such that both a^2 + b^2 - a*b and a^2 + b^2 + a*b are prime.

Original entry on oeis.org

5, 13, 37, 109, 193, 421, 457, 541, 613, 709, 757, 1033, 1117, 1201, 1549, 1597, 1621, 1789, 2137, 2293, 2377, 2437, 2797, 3061, 3109, 3313, 3361, 3469, 4153, 4621, 4657, 4729, 5077, 5233, 5569, 5653, 6421, 6469, 6637, 6997, 7417, 7561, 7681, 7753, 8101, 8689
Offset: 1

Views

Author

Thomas Ordowski, Apr 24 2012

Keywords

Examples

			The prime 13 = 2^2 + 3^2 is a term, since 13 - 2*3 = 7 is prime and 13 + 2*3 = 19 is prime.
		

Crossrefs

Subsequence of A002313.
Cf. A007645.

Programs

  • Mathematica
    prsQ[{a_,b_}]:=Module[{c=a^2+b^2,d=a*b},And@@PrimeQ[c+{0,d,-d}]]; Sort[#[[1]]^2+#[[2]]^2&/@Select[Subsets[Range[100],{2}],prsQ]] (* Harvey P. Dale, Apr 27 2014 *)
  • PARI
    list(lim)=my(v=List(), t); for(a=1, sqrt(lim), forstep(b=1+a%2, min(a, sqrt(lim-a^2)), 2, if(isprime(t=a^2+b^2) && isprime(t-a*b) && isprime(t+a*b), listput(v, t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 25 2012

Formula

a(n) == 1 (mod 4). - Thomas Ordowski, Mar 13 2018

Extensions

a(6)-a(46) from Charles R Greathouse IV, Apr 25 2012

A227680 Numbers whose sum of semiprime divisors is a prime number.

Original entry on oeis.org

30, 36, 42, 66, 70, 72, 78, 105, 108, 114, 130, 144, 154, 165, 174, 182, 196, 210, 216, 222, 231, 238, 246, 255, 273, 282, 285, 286, 288, 310, 318, 324, 345, 357, 366, 370, 385, 392, 399, 418, 430, 432, 434, 441, 442, 455, 462, 465, 474, 483, 494, 498, 518
Offset: 1

Views

Author

Michel Lagneau, Jul 19 2013

Keywords

Comments

There exists a subsequence of infinite squares {36, 144, 196, 324, 441, 576, 676, 784, 1089, 1225, 1296, 1764,...} because the numbers of the form n = (p*q)^2 with p and q primes are in the sequence if p^2 + p*q + q^2 is prime (subsequence of A007645), and the numbers p^2, p*q and q^2 are the three possible semiprime divisors of n. This numbers of the sequence are 6^2, 14^2, 21^2, 26^2, 33^2, 35^2, 51^2, 69^2,...
The numbers of the form n = (p^a*q^v)^2 are also in the sequence => the sequence is infinite.
There exists a subsequence of numbers having three distinct prime divisors p, q and r such that p*q+q*r+r*p is prime (see A087054). This numbers are 30, 42, 66, 70, 78, 105, 114, ...

Examples

			30 is in the sequence because the semiprime divisors of 30 are 2*3, 2*5 and 3*5 and the sum 6+10+15 = 31 is a prime number.
		

Crossrefs

Cf. A007645 (primes of the form x^2 + xy + y^2).
Cf. A087054 (primes of the form p*q + q*r + r*p where p, q and r are distinct prime numbers).

Programs

  • Maple
    with(numtheory):for n from 2 to 600 do:x:=divisors(n):n1:=nops(x): y:=factorset(n):n2:=nops(y):s1:=0:s2:=0:for i from 1 to n1 do: if bigomega(x[i])=2 then s1:=s1+x[i]:else fi:od: s2:=sum('y[i]', 'i'=1..n2):if type(s1,prime)=true then printf(`%d, `,n):else fi:od:
  • Mathematica
    semipSigma[n_] := DivisorSum[n, # &, PrimeOmega[#] == 2 &]; Select[Range[500], PrimeQ @ semipSigma[#] &] (* Amiram Eldar, May 10 2020 *)

A230834 Loeschian semiprimes: semiprimes of the form x^2 + x*y + y^2.

Original entry on oeis.org

4, 9, 21, 25, 39, 49, 57, 91, 93, 111, 121, 129, 133, 169, 183, 201, 217, 219, 237, 247, 259, 289, 291, 301, 309, 327, 361, 381, 403, 417, 427, 453, 469, 471, 481, 489, 511, 529, 543, 553, 559, 579, 589, 597, 633, 669, 679, 687, 703, 721, 723, 763, 793, 813, 817, 831, 841, 849, 871
Offset: 1

Views

Author

Irina Gerasimova, Oct 31 2013

Keywords

Comments

Intersection of A001358 and A003136.
Loeschian primes equals generalized cuban primes (A007645).

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim\2, forprime(q=2, min(lim\p,p), if((p%3<2 && q%3<2) || p==q, listput(v,p*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Oct 31 2013

A252017 Primes of the form (p + q)^3 + 3, where p and q are consecutive primes.

Original entry on oeis.org

140611, 1000003, 68921003, 81746507, 105154051, 360944131, 709732291, 1643032003, 8072216219, 8390176771, 10021812419, 10823192131, 11239424003, 14526784003, 15363967259, 17014253251, 23689358851, 24693014531, 26784575491, 27270901003, 27928443307, 36594368003
Offset: 1

Views

Author

K. D. Bajpai, Dec 13 2014

Keywords

Examples

			140611 is in the sequence because (23 + 29)^3 + 3 = 140611 which is prime: 23 and 29 are consecutive primes.
81746507 is in the sequence because (211 + 223)^3 + 3 = 81746507 which is prime: 211 and 223 are consecutive primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[(Prime[n] + Prime[n + 1])^3 + 3, {n, 500}], PrimeQ[#] &]
  • PARI
    s=[]; for(k=1, 500, t=(prime(k) + prime(k+1))^3 + 3; if(isprime(t), s=concat(s, t))); s

A264732 Löschian numbers (A003136) which are the sum of 2 nonzero squares.

Original entry on oeis.org

13, 25, 37, 52, 61, 73, 97, 100, 109, 117, 148, 157, 169, 181, 193, 208, 225, 229, 241, 244, 277, 289, 292, 313, 325, 333, 337, 349, 373, 388, 397, 400, 409, 421, 433, 436, 457, 468, 481, 541, 549, 577, 592, 601, 613, 625, 628, 637, 657, 661, 673, 676, 709, 724, 733
Offset: 1

Views

Author

Altug Alkan, Nov 22 2015

Keywords

Comments

n is in the sequence iff 4*n is.
If a(n) is a prime number, a(n) mod 12 = 1.
Prime terms of sequence are listed in A068228 that lists generalized cuban primes (A007645) which are the sum of 2 nonzero squares.
Also positive numbers of the form x^2 - 3*y^2 (A084916) that are the sum of 2 nonzero squares. - Frank M Jackson, Oct 13 2019

Examples

			a(1) = 13 because 13 = 3^2 + 3*1 + 1^2 = 3^2 + 2^2.
a(2) = 25 because 25 = 5^2 + 5*0 + 0^2 = 4^2 + 3^2.
a(3) = 37 because 37 = 4^2 + 4*3 + 3^2 = 6^2 + 1^2.
		

Crossrefs

Programs

A108768 Primes that appear in the sequence p:=x^2+x+1, sieved with a quadratic sieve construction.

Original entry on oeis.org

3, 7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 307, 127, 421, 463, 79, 601, 31, 37, 757, 271, 67, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163, 3541, 523, 97, 3907
Offset: 1

Views

Author

Bernhard Helmes (pi(AT)devalco.de), Jun 24 2005

Keywords

Comments

This sequence appears in a website available on web.archive (see Quadratic Sieve Construction link). There is a single appearance of the first term 3, while all other primes appear twice. See A256148 for a version of the sequence consistent with the current version of the website where each prime appears only once. - Ray Chandler, Jul 05 2015

Crossrefs

Programs

  • MuPAD
    // from Quadratic Sieve Construction link.
    liste_max:=10000;
    for x from 1 to liste_max do
        liste_x[x]:=x^2+x+1;
        liste_prim[x]:=1;
    end_for;
    x:=1;
    while (x1) then
         print ("Prim ", p, "x = ", x, isprime (p)) ;
         // Aussiebung
         while (stelleRay Chandler, Jul 05 2015

A112770 Products of pairs of terms from A003627.

Original entry on oeis.org

4, 10, 22, 25, 34, 46, 55, 58, 82, 85, 94, 106, 115, 118, 121, 142, 145, 166, 178, 187, 202, 205, 214, 226, 235, 253, 262, 265, 274, 289, 295, 298, 319, 334, 346, 355, 358, 382, 391, 394, 415, 445, 451, 454, 466, 478, 493, 502, 505, 514, 517, 526, 529, 535
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Oct 15 2005

Keywords

Comments

It would be incorrect to call these Eisenstein semiprimes. For the Eisenstein primes see A055664. - N. J. A. Sloane, Feb 06 2008. For

References

  • Conway, J. H. and Guy, R. K., The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
  • Wagon, S. "Eisenstein Primes." Section 9.8 in Mathematica in Action. New York: W. H. Freeman, pp. 319-323, 1991.

Crossrefs

Formula

{a(n)} = {p*q: p and q both elements of A007645} = {p*q: p and q both of form 3*m^2 * n^2 for integers m, n}.

Extensions

Definition corrected by N. J. A. Sloane, Feb 06 2008

A120124 Smallest prime p such that p*10^n + 1 is a prime.

Original entry on oeis.org

3, 7, 3, 7, 7, 61, 3, 7, 7, 3, 19, 37, 109, 79, 97, 13, 37, 19, 73, 103, 97, 283, 157, 61, 19, 61, 1213, 3, 163, 691, 367, 163, 181, 157, 241, 3, 103, 733, 151, 283, 337, 193, 211, 163, 7, 73, 307, 61, 223, 1549, 31, 127, 13, 547, 103, 151, 193, 811, 337, 19, 1021, 151
Offset: 1

Views

Author

Alexander Adamchuk, Aug 15 2006

Keywords

Comments

All terms belong to A007645. All terms also belong to A055664. Also many terms including the first 14 smallest primes from 3 to 139 {3,7,13,19,31,37,43,61,73,79,97,103,127,139} belong tpA023203. The smallest term that differs from A023203 is 151.

Examples

			a(1) = 3 because 31 = 3*10 + 1 is the smallest prime of form p*10 + 1, where p is a prime.
a(2) = 7 because 701 = 7*100 + 1 is the smallest prime of form p*100 + 1.
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime,[$1..10^5]):
    for n from 1 to 1000 do
       for p in Primes do
          if isprime(p*10^n+1) then
            A[n]:= p
          fi
        od
    od:
    seq(A[n],n=1..1000); # Robert Israel, May 29 2014
  • Mathematica
    prs=Prime[Range[2000]];Table[i=1;While[!PrimeQ[First[Take[prs,{i}]] 10^n+1],i++];Prime[i],{n,200}] (* Harvey P. Dale, May 15 2011 *)

A139493 Primes of the form x^2 + 9x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

11, 23, 37, 53, 67, 71, 113, 137, 163, 179, 191, 317, 331, 379, 389, 401, 421, 443, 449, 463, 487, 499, 599, 617, 631, 641, 653, 683, 709, 751, 757, 823, 863, 883, 907, 911, 947, 977, 991, 1061, 1087, 1093, 1103, 1171, 1213, 1303, 1367, 1373, 1409, 1423
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

This is a member of the family of sequences of primes of the forms x^2 + kxy + y^2.
See for k=1 A007645 = x^2+3y^2, k=2 squares no primes, k=3 A038872, k=4 A068228 = x^2+9y^2, k=5 A139492, k=6 A007519 = x^2+8y^2, k=7 A033212 = x^2+15y^2, k=8 A107152 = x^2+45y^2, k=9 A139493, k=10 A107008 = x^2+24y^2, k=11 A139494, k=12 A139495, k=13 A139496, k=14* = 10 A107008 = x^2+24y^2, k=15 A139497, k=16 A033215 = x^2+21y^2, k=17 A139498, k=18 A107145 = x^2+40y^2, k=19 A139499, k=20 A139500, k=21 A139501, k=22 A139502, k=23 A139503, k=24 A139504, k=25 A139505, k=26,A139506, k=27 A139507, k=28 A139508, k=29 A139509, k=30 A139510, k=31 A139511, k=32 A139512

Crossrefs

Programs

  • Mathematica
    a = {}; w = 9; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139495 Primes of the form x^2 + 12x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

29, 109, 149, 281, 389, 401, 421, 449, 541, 569, 641, 701, 709, 809, 821, 1009, 1061, 1129, 1201, 1229, 1289, 1381, 1409, 1429, 1481, 1549, 1621, 1709, 1789, 1801, 1901, 2069, 2081, 2129, 2221, 2269, 2381, 2389, 2521, 2549, 2689, 2741, 2801, 2909, 2969
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 12; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
    With[{nn=50},Take[Union[Select[#[[1]]^2+12#[[1]]#[[2]]+#[[2]]^2&/@ Tuples[ Range[ nn],2],PrimeQ]],nn]] (* Harvey P. Dale, Dec 18 2015 *)
Previous Showing 51-60 of 87 results. Next