cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A051651 Primes of the form 30030*p + 1 where p is a prime.

Original entry on oeis.org

150151, 330331, 390391, 870871, 930931, 1231231, 1411411, 1831831, 2012011, 2372371, 2672671, 3813811, 4174171, 4474471, 5375371, 5435431, 5735731, 5915911, 8078071, 9219211, 10120111, 10420411, 11021011, 11501491, 12642631, 14024011, 14624611, 16246231, 16426411
Offset: 1

Views

Author

Keywords

Comments

Generalization of A005385; can be called 30030-safe primes.
A002110(6)*p + 1 = 30030*p + 1 (prime).

Examples

			390391 is a term because 390391 = 2*3*5*7*11*13*p + 1 is prime, where p = 13.
		

Crossrefs

Programs

  • Mathematica
    Select[30030Prime[Range[100]]+1,PrimeQ] (* Harvey P. Dale, Dec 09 2010 *)
  • PARI
    isok(k) = isprime(k) && k % 30030 == 1 && isprime((k-1)/30030); \\ Amiram Eldar, Feb 24 2025

Formula

a(n) = 30030 * A051654(n) + 1. - Amiram Eldar, Feb 24 2025

A075704 p and 12*p+1 are both primes.

Original entry on oeis.org

3, 5, 13, 19, 23, 29, 31, 59, 61, 71, 73, 83, 89, 101, 103, 139, 149, 191, 199, 223, 229, 233, 269, 271, 281, 293, 311, 379, 383, 401, 409, 433, 463, 479, 503, 523, 569, 601, 631, 643, 661, 691, 719, 751, 761, 773, 811, 829, 839, 863, 883, 929, 953, 1009, 1013
Offset: 0

Views

Author

Jani Melik, Oct 02 2002

Keywords

Examples

			5 is a prime and 12*5+1=61 is also a prime. 13 and 12*13+1=157 are both primes...
		

Crossrefs

Programs

  • Maple
    ts_m_sophie_germain_pras := proc(n); if (isprime(n)='true' and isprime(12*n+1)='true') then RETURN(n); fi; end: seq(ts_m_sophie_germain_pras(i), i=1..2030);
  • Mathematica
    Select[Prime[Range[300]],PrimeQ[12#+1]&] (* Harvey P. Dale, Feb 06 2012 *)

A265770 Numerators of primes-only best approximates (POBAs) to 6; see Comments.

Original entry on oeis.org

13, 11, 19, 17, 31, 29, 43, 41, 67, 79, 103, 101, 113, 139, 137, 173, 223, 257, 283, 281, 317, 353, 367, 401, 439, 499, 607, 619, 617, 643, 641, 653, 677, 761, 787, 823, 821, 907, 941, 977, 1039, 1087, 1181, 1193, 1361, 1373, 1399, 1433, 1447, 1543, 1579
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs to 6 start with 13/2, 11/2, 19/3, 17/3, 31/5, 29/5, 43/7, 41/7, 67/11, 79/13, 103/17, 101/17. For example, if p and q are primes and q > 17, then 103/17 (and 101/17) is closer to 6 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 6; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265770/A265771 *)
    Numerator[tL]   (* A227756 *)
    Denominator[tL] (* A158015 *)
    Numerator[tU]   (* A051644 *)
    Denominator[tU] (* A007693 *)
    Numerator[y]    (* A222570 *)
    Denominator[y]  (* A265771 *)

A265771 Denominators of primes-only best approximates (POBAs) to 6; see Comments.

Original entry on oeis.org

2, 2, 3, 3, 5, 5, 7, 7, 11, 13, 17, 17, 19, 23, 23, 29, 37, 43, 47, 47, 53, 59, 61, 67, 73, 83, 101, 103, 103, 107, 107, 109, 113, 127, 131, 137, 137, 151, 157, 163, 173, 181, 197, 199, 227, 229, 233, 239, 241, 257, 263, 269, 271, 277, 283, 283, 293, 311
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs to 6 start with 13/2, 11/2, 19/3, 17/3, 31/5, 29/5, 43/7, 41/7, 67/11, 79/13, 103/17, 101/17. For example, if p and q are primes and q > 17, then 103/17 (and 101/17) is closer to 6 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 6; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265770/A265771 *)
    Numerator[tL]   (* A227756 *)
    Denominator[tL] (* A158015 *)
    Numerator[tU]   (* A051644 *)
    Denominator[tU] (* A007693 *)
    Numerator[y]    (* A222570 *)
    Denominator[y]  (* A265771 *)

A188583 Primes p such that 6*p^3+1 is also prime.

Original entry on oeis.org

3, 5, 13, 41, 97, 131, 223, 283, 353, 397, 461, 467, 523, 577, 661, 677, 691, 773, 811, 887, 937, 997, 1091, 1223, 1277, 1321, 1447, 1487, 1567, 1571, 1637, 1721, 1741, 1777, 1823, 1861, 2161, 2243, 2273, 2341, 2351, 2357, 2371, 2383, 2467, 2551
Offset: 1

Views

Author

Bruno Berselli, Apr 22 2011

Keywords

Examples

			For prime  p = 283,  6*p^3+1 = 135991123  is prime.
		

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2600) | IsPrime(6*p^3+1) ];
  • Mathematica
    Select[Prime[Range[500]],PrimeQ[6#^3+1]&] (* Harvey P. Dale, May 13 2011 *)

A374593 Numbers k such that k - rad(k) + 1 is prime, where rad(k) is the radical A007947(k).

Original entry on oeis.org

4, 8, 9, 12, 18, 20, 24, 32, 36, 40, 44, 45, 48, 49, 50, 56, 60, 63, 72, 75, 80, 81, 84, 88, 90, 92, 99, 104, 108, 116, 117, 128, 132, 136, 140, 144, 147, 153, 156, 160, 162, 164, 168, 169, 180, 184, 200, 204, 207, 212, 216, 224, 225, 234, 240, 243, 245, 250
Offset: 1

Views

Author

Arsen Vardanyan, Aug 23 2024

Keywords

Comments

Includes 4*p for p in A005384, 8*p for p in A007693, and 16*p for p in A228857. - Robert Israel, Jun 27 2025

Examples

			12 is a term, because 12 - rad(12) + 1 = 12 - (2*3) + 1 = 12 - 6 + 1 = 7 is prime.
		

Crossrefs

Programs

  • Maple
    rad:= n -> convert(numtheory:-factorset(n),`*`):
    select(k -> isprime(k - rad(k)+1), [$1..1000]); # Robert Israel, Jun 27 2025
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n);Select[Range[250],PrimeQ[#-rad[#]+1]&] (* James C. McMahon, Sep 27 2024 *)
  • PARI
    isok(k) = isprime(k - (factorback(factor(k)[, 1])) + 1);

A075705 Safe primes (A005385) (p and (p-1)/2 are primes) such that 6*p+1 is also prime.

Original entry on oeis.org

5, 7, 11, 23, 47, 83, 107, 263, 347, 467, 503, 863, 887, 1283, 1487, 1823, 1907, 2027, 2063, 2447, 2903, 3203, 3623, 4007, 4127, 4547, 4703, 4787, 5387, 5807, 7523, 7703, 8147, 8423, 11423, 11483, 11807, 12107, 12227, 12647, 12983, 13043, 13163, 14087, 14207
Offset: 1

Views

Author

Jani Melik, Oct 02 2002

Keywords

Examples

			47 is prime, so is (47-1)/2=23 and also 6*47+1=283; 83 is a prime, (83-1)/2=41 and 6*83+1=499, ...
		

Crossrefs

Programs

  • Maple
    ts_sg_var_pras := proc(nmax) local i,tren,atek; tren := 0: for i from 1 to nmax do atek := numtheory[safeprime](i): if (atek > tren) then if (isprime(atek)='true' and isprime(6*atek+1)='true') then tren := atek: fi; fi; od; end: seq(ts_sg_var_pras(i), i=1..3000);
  • Mathematica
    Select[Range[20000], PrimeQ[#] && PrimeQ[(#-1)/2] && PrimeQ[6#+1] &] (* T. D. Noe, Nov 07 2011 *)
    Select[Prime[Range[1700]],And@@PrimeQ[{(#-1)/2,6#+1}]&] (* Harvey P. Dale, Feb 28 2013 *)

A106059 Primes p such that p + 6 and 6*p + 1 are primes.

Original entry on oeis.org

5, 7, 11, 13, 17, 23, 37, 47, 61, 73, 83, 101, 103, 107, 131, 151, 173, 233, 257, 263, 271, 277, 311, 331, 347, 367, 373, 443, 461, 503, 557, 593, 601, 607, 641, 653, 727, 751, 853, 941, 947, 971, 1013, 1033, 1063, 1091, 1103, 1117, 1283, 1321, 1361
Offset: 1

Views

Author

Zak Seidov, May 07 2005

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000)|IsPrime(p+6) and IsPrime(6*p+1)]; // Vincenzo Librandi, Jan 30 2011
  • Mathematica
    Select[Prime[Range[220]], PrimeQ[6#+1]&&PrimeQ[1#+6]&]

A153591 Primes p such that 6p^2+6p+1 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 19, 23, 31, 41, 43, 47, 67, 73, 97, 101, 107, 109, 137, 151, 199, 233, 239, 241, 251, 263, 283, 317, 331, 337, 353, 359, 379, 383, 419, 421, 431, 439, 449, 463, 541, 569, 571, 577, 601, 619, 647, 691, 701, 769, 823, 839, 877, 907, 929, 953, 971
Offset: 1

Views

Author

Vincenzo Librandi, Dec 29 2008

Keywords

Examples

			For p = 2, 6p^2+6p+1 = 37 is prime; for p = 47, 6p^2+6p+1 = 13537 is prime.
		

Crossrefs

Cf. A007693 (n and 6n+1 are primes), A153812 (primes p such that 6*p^2+1 is also prime).

Programs

  • Magma
    [ p: p in PrimesUpTo(1000) | IsPrime(6*p^2+6*p+1) ];
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[6#^2 + 6# + 1] &] (* Vincenzo Librandi, Oct 15 2012 *)

Extensions

Edited and extended beyond a(20) by Klaus Brockhaus, Jan 01 2009

A188132 Primes p such that p == 3 (mod 4) and 6p+1 is prime.

Original entry on oeis.org

3, 7, 11, 23, 47, 83, 103, 107, 131, 151, 263, 271, 283, 311, 331, 347, 367, 443, 467, 503, 607, 683, 727, 751, 787, 863, 887, 907, 947, 971, 1063, 1091, 1103, 1151, 1171, 1283, 1327, 1423, 1427, 1451, 1487, 1511, 1531, 1567, 1607, 1787, 1811, 1823, 1831, 1847, 1907, 1931, 1987
Offset: 1

Views

Author

M. F. Hasler, Mar 21 2011

Keywords

Comments

Complement of A188131 in A007693 \ {2}.

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 2000, 4], PrimeQ[#] && PrimeQ[6# + 1] &] (* Amiram Eldar, Nov 13 2019 *)
  • PARI
    forprime( p=1,1e4, p%4==3 & isprime(p*6+1) & print1(p", "))
Previous Showing 11-20 of 23 results. Next