A305987
Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k/k).
Original entry on oeis.org
1, 1, 2, 9, 52, 355, 2976, 29897, 343988, 4423503, 63088600, 992691205, 17095554444, 319404545291, 6427307831504, 138546745515393, 3185841858310180, 77866726065935239, 2016161715005701128, 55127056896177521981, 1587073087715010466556, 47982707153606476112067, 1519931218769637781731712
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(combinat[multinomial](n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*(i-1)!^j, j=0..min(1, n/i))))
end:
a:= n-> add(Stirling2(n, j)*b(j$2), j=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
-
nmax = 22; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) (Exp[x] - 1)^(j k)/(k j^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
b[0] = 1; b[n_] := b[n] = Sum[(n - 1)!/(n - k)! DivisorSum[k, (-#)^(1 - k/#) &] b[n - k], {k, 1, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k], {k, 0, n}]; Table[a[n], {n, 0, 22}]
A362362
Number of permutations of [n] such that each cycle contains its length as an element.
Original entry on oeis.org
1, 1, 1, 3, 8, 36, 174, 1104, 7440, 62640, 545040, 5649840, 60681600, 748621440, 9518342400, 136758585600, 2009451628800, 32848492723200, 549241915622400, 10066913176320000, 188293339922688000, 3832031198451456000, 79291640831090688000, 1771146970953744384000
Offset: 0
a(3) = 3: (123), (132), (1)(23).
a(4) = 8: (1234), (1243), (1324), (1342), (1423), (1432), (1)(234), (1)(243).
-
a:= n-> add((n-nops(p))!, p=select(l-> nops(l)=
nops({l[]}), combinat[partition](n))):
seq(a(n), n=0..24);
# second Maple program:
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$3):
seq(a(n), n=0..24);
-
b[n_, i_, p_] := b[n, i, p] = If[i*(i + 1)/2 < n, 0, If[n == 0, p!, b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p - 1]]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Nov 15 2023, from second Maple program *)
A087639
E.g.f.: Product_{m >= 1} (1+x^(2*m)/(2*m)) (even powers only).
Original entry on oeis.org
1, 1, 6, 210, 8400, 740880, 88814880, 15217282080, 3319002086400, 992431440000000, 351841557779712000, 156995673442223616000, 82429416503416958976000, 52017974139195896832000000, 37547796668359538444083200000, 31987697744989345038846566400000
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003
-
b:= proc(n, i) option remember; `if`((i/2)*(i/2+1)n, 0, (i-1)!*
b(n-i, i-2)*binomial(n, i))))
end:
a:= n-> b(2*n$2):
seq(a(n), n=0..17); # Alois P. Heinz, Nov 01 2017
-
nmax = 20; Table[(CoefficientList[Series[Product[1 + x^(2*k)/(2*k), {k, 1, 2*nmax}], {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Jul 23 2019 *)
A292358
E.g.f.: Product_{k>=1} 1/(1 + x^k/k).
Original entry on oeis.org
1, -1, 1, -5, 20, -104, 584, -4304, 35720, -329160, 3239112, -36135912, 438454752, -5743527360, 80351263680, -1218698312064, 19599583392384, -334335747652224, 6019295318075520, -114911886106373760, 2305234779285164544, -48596575400453366784
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1 + x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 15 2017 *)
-
{a(n) = n!*polcoeff(1/prod(k=1, n, 1+x^k/k+x*O(x^n)), n)}
A292359
E.g.f.: Product_{k>=1} (1 - x^k/k).
Original entry on oeis.org
1, -1, -1, 1, 2, 26, -6, 414, -624, -288, -20880, 164880, -9756000, 43529760, -324404640, -4052492640, -48521410560, 1168445053440, -26858914467840, 341240066334720, -5752671815116800, 49267037136844800, -769468911734476800, 39863275492626432000
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 15 2017 *)
-
{a(n) = n!*polcoeff(prod(k=1, n, 1-x^k/k+x*O(x^n)), n)}
A326864
G.f.: Product_{k>=1} (1 + x^k/k^2) = Sum_{n>=0} a(n)*x^n/n!^2.
Original entry on oeis.org
1, 1, 1, 13, 100, 1876, 57636, 2051316, 104640768, 6819033600, 576652089600, 57187381536000, 7057192160793600, 1014733052692300800, 172646881540527744000, 33848454886497227289600, 7637231669166956976537600, 1948418678155880277481881600
Offset: 0
a(n) ~ c * (n-1)!^2, where c = A156648 = Product_{k>=1} (1 + 1/k^2) = sinh(Pi)/Pi = 3.67607791037497772...
-
b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 27 2023
-
nmax = 20; CoefficientList[Series[Product[(1+x^k/k^2), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!^2
A364279
Number of permutations of [n] with distinct cycle lengths such that no cycle contains its length as an element.
Original entry on oeis.org
1, 0, 0, 1, 2, 12, 86, 546, 4284, 39588, 416988, 4378848, 54297504, 695592000, 9840307680, 149031686880, 2387863575360, 40338090711360, 736126007279040, 13938942123429120, 279358800902737920, 5894877845100625920, 129943826126987765760, 2985640822908446976000
Offset: 0
a(3) = 1: (13)(2).
a(4) = 2: (124)(3), (142)(3).
a(5) = 12: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4), (124)(35), (142)(35), (125)(34), (152)(34), (13)(245), (13)(254).
A326857
E.g.f.: Product_{k>=1} (1 + x^(3*k-1) / (3*k-1)).
Original entry on oeis.org
1, 0, 1, 0, 0, 24, 0, 504, 5040, 0, 226800, 3628800, 0, 438721920, 6227020800, 16345929600, 1127656857600, 20922789888000, 58203397324800, 6697914906009600, 121645100408832000, 655224745383936000, 51359276952023040000, 1124000727777607680000
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
A335638
Expansion of e.g.f. Product_{k>0} (1 + tan(x)^k / k).
Original entry on oeis.org
1, 1, 1, 7, 22, 190, 1170, 11646, 109520, 1289168, 16018064, 223757840, 3407971488, 55709905056, 998011344928, 18778681069024, 385316251841536, 8225863823985664, 189755182485906432, 4538893733746003968, 116147781156885837824, 3078530007519830730752, 86521073899573883088896
Offset: 0
-
max = 22; Range[0, max]! * CoefficientList[Series[Product[1 + Tan[x]^k/k, {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 03 2020 *)
-
N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+tan(x)^k/k)))
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, (-1)^(i+1)*tan(x)^(i*j)/(i*j^i))))))
A182965
E.g.f.: A(x) = Product_{n>=1} (1 + 2*x^n/n)^n.
Original entry on oeis.org
1, 2, 4, 36, 168, 1440, 13920, 134400, 1619520, 20549760, 294631680, 4449096960, 74429752320, 1312794362880, 24870628823040, 501316411115520, 10661299747338240, 239672059847700480, 5664762159214878720
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 4*x^2/2! + 36*x^3/3! + 168*x^4/4! +...
A(x) = (1+2x)*(1+2x^2/2)^2*(1+2x^3/3)^3*(1+2x^4/4)^4*(1+2x^5/5)^5*...
-
nmax = 20; CoefficientList[Series[Product[(1 + 2*x^k/k)^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 07 2020 *)
-
{a(n,k=2)=n!*polcoeff(prod(m=1,n,(1+k*x^m/m+x*O(x^n))^m),n)}
Comments