cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A305987 Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k/k).

Original entry on oeis.org

1, 1, 2, 9, 52, 355, 2976, 29897, 343988, 4423503, 63088600, 992691205, 17095554444, 319404545291, 6427307831504, 138546745515393, 3185841858310180, 77866726065935239, 2016161715005701128, 55127056896177521981, 1587073087715010466556, 47982707153606476112067, 1519931218769637781731712
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 15 2018

Keywords

Comments

Stirling transform of A007838.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(combinat[multinomial](n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*(i-1)!^j, j=0..min(1, n/i))))
        end:
    a:= n-> add(Stirling2(n, j)*b(j$2), j=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 15 2018
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) (Exp[x] - 1)^(j k)/(k j^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    b[0] = 1; b[n_] := b[n] = Sum[(n - 1)!/(n - k)! DivisorSum[k, (-#)^(1 - k/#) &] b[n - k], {k, 1, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k], {k, 0, n}]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*(exp(x) - 1)^(j*k)/(k*j^k)).
a(n) = Sum_{k=0..n} Stirling2(n,k)*A007838(k).
a(n) ~ exp(-gamma) * n! / (2 * log(2)^(n+1)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019

A362362 Number of permutations of [n] such that each cycle contains its length as an element.

Original entry on oeis.org

1, 1, 1, 3, 8, 36, 174, 1104, 7440, 62640, 545040, 5649840, 60681600, 748621440, 9518342400, 136758585600, 2009451628800, 32848492723200, 549241915622400, 10066913176320000, 188293339922688000, 3832031198451456000, 79291640831090688000, 1771146970953744384000
Offset: 0

Views

Author

Alois P. Heinz, Jul 05 2023

Keywords

Comments

The cycle lengths are distinct as a consequence of the definition.

Examples

			a(3) = 3: (123), (132), (1)(23).
a(4) = 8: (1234), (1243), (1324), (1342), (1423), (1432), (1)(234), (1)(243).
		

Crossrefs

Programs

  • Maple
    a:= n-> add((n-nops(p))!, p=select(l-> nops(l)=
            nops({l[]}), combinat[partition](n))):
    seq(a(n), n=0..24);
    # second Maple program:
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$3):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i*(i + 1)/2 < n, 0, If[n == 0, p!, b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p - 1]]];
    a[n_] := b[n, n, n];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Nov 15 2023, from second Maple program *)

A087639 E.g.f.: Product_{m >= 1} (1+x^(2*m)/(2*m)) (even powers only).

Original entry on oeis.org

1, 1, 6, 210, 8400, 740880, 88814880, 15217282080, 3319002086400, 992431440000000, 351841557779712000, 156995673442223616000, 82429416503416958976000, 52017974139195896832000000, 37547796668359538444083200000, 31987697744989345038846566400000
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003

Keywords

Comments

Number of permutations of 2*n elements with distinct cycle lengths and without odd cycles. - Vladeta Jovovic, Aug 17 2004

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`((i/2)*(i/2+1)n, 0, (i-1)!*
           b(n-i, i-2)*binomial(n, i))))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..17);  # Alois P. Heinz, Nov 01 2017
  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[Product[1 + x^(2*k)/(2*k), {k, 1, 2*nmax}], {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Jul 23 2019 *)

Formula

a(n) ~ 2*exp(-gamma/2) * (2*n)! / (Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019

Extensions

More terms from Christian G. Bower, Jan 06 2006

A292358 E.g.f.: Product_{k>=1} 1/(1 + x^k/k).

Original entry on oeis.org

1, -1, 1, -5, 20, -104, 584, -4304, 35720, -329160, 3239112, -36135912, 438454752, -5743527360, 80351263680, -1218698312064, 19599583392384, -334335747652224, 6019295318075520, -114911886106373760, 2305234779285164544, -48596575400453366784
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 + x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 15 2017 *)
  • PARI
    {a(n) = n!*polcoeff(1/prod(k=1, n, 1+x^k/k+x*O(x^n)), n)}

Formula

a(n) ~ (-1)^n * n!. - Vaclav Kotesovec, Sep 15 2017
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^k*x^(j*k)/(k*j^k)). - Ilya Gutkovskiy, May 27 2018

A292359 E.g.f.: Product_{k>=1} (1 - x^k/k).

Original entry on oeis.org

1, -1, -1, 1, 2, 26, -6, 414, -624, -288, -20880, 164880, -9756000, 43529760, -324404640, -4052492640, -48521410560, 1168445053440, -26858914467840, 341240066334720, -5752671815116800, 49267037136844800, -769468911734476800, 39863275492626432000
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 15 2017 *)
  • PARI
    {a(n) = n!*polcoeff(prod(k=1, n, 1-x^k/k+x*O(x^n)), n)}

Formula

Conjecture: a(n) ~ -(-1)^n * n! / n^2. - Vaclav Kotesovec, Sep 15 2017
E.g.f.: exp(-Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*j^k)). - Ilya Gutkovskiy, May 27 2018

A326864 G.f.: Product_{k>=1} (1 + x^k/k^2) = Sum_{n>=0} a(n)*x^n/n!^2.

Original entry on oeis.org

1, 1, 1, 13, 100, 1876, 57636, 2051316, 104640768, 6819033600, 576652089600, 57187381536000, 7057192160793600, 1014733052692300800, 172646881540527744000, 33848454886497227289600, 7637231669166956976537600, 1948418678155880277481881600
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Examples

			a(n) ~ c * (n-1)!^2, where c = A156648 = Product_{k>=1} (1 + 1/k^2) = sinh(Pi)/Pi = 3.67607791037497772...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 27 2023
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1+x^k/k^2), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!^2

A364279 Number of permutations of [n] with distinct cycle lengths such that no cycle contains its length as an element.

Original entry on oeis.org

1, 0, 0, 1, 2, 12, 86, 546, 4284, 39588, 416988, 4378848, 54297504, 695592000, 9840307680, 149031686880, 2387863575360, 40338090711360, 736126007279040, 13938942123429120, 279358800902737920, 5894877845100625920, 129943826126987765760, 2985640822908446976000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 1: (13)(2).
a(4) = 2: (124)(3), (142)(3).
a(5) = 12: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4), (124)(35), (142)(35), (125)(34), (152)(34), (13)(245), (13)(254).
		

Crossrefs

A326857 E.g.f.: Product_{k>=1} (1 + x^(3*k-1) / (3*k-1)).

Original entry on oeis.org

1, 0, 1, 0, 0, 24, 0, 504, 5040, 0, 226800, 3628800, 0, 438721920, 6227020800, 16345929600, 1127656857600, 20922789888000, 58203397324800, 6697914906009600, 121645100408832000, 655224745383936000, 51359276952023040000, 1124000727777607680000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ 2 * Pi * n! / (exp(gamma/3) * 3^(5/6) * Gamma(1/3)^2 * n^(2/3)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

A335638 Expansion of e.g.f. Product_{k>0} (1 + tan(x)^k / k).

Original entry on oeis.org

1, 1, 1, 7, 22, 190, 1170, 11646, 109520, 1289168, 16018064, 223757840, 3407971488, 55709905056, 998011344928, 18778681069024, 385316251841536, 8225863823985664, 189755182485906432, 4538893733746003968, 116147781156885837824, 3078530007519830730752, 86521073899573883088896
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 22; Range[0, max]! * CoefficientList[Series[Product[1 + Tan[x]^k/k, {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 03 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+tan(x)^k/k)))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, (-1)^(i+1)*tan(x)^(i*j)/(i*j^i))))))

Formula

E.g.f.: exp( Sum_{i>0} Sum_{j>0} (-1)^(i+1)*tan(x)^(i*j)/(i*j^i) ).
Conjecture: a(n) ~ A080130 * 2^(2*n+1) * n! / Pi^(n+1). - Vaclav Kotesovec, Oct 04 2020

A182965 E.g.f.: A(x) = Product_{n>=1} (1 + 2*x^n/n)^n.

Original entry on oeis.org

1, 2, 4, 36, 168, 1440, 13920, 134400, 1619520, 20549760, 294631680, 4449096960, 74429752320, 1312794362880, 24870628823040, 501316411115520, 10661299747338240, 239672059847700480, 5664762159214878720
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2010

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 4*x^2/2! + 36*x^3/3! + 168*x^4/4! +...
A(x) = (1+2x)*(1+2x^2/2)^2*(1+2x^3/3)^3*(1+2x^4/4)^4*(1+2x^5/5)^5*...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + 2*x^k/k)^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 07 2020 *)
  • PARI
    {a(n,k=2)=n!*polcoeff(prod(m=1,n,(1+k*x^m/m+x*O(x^n))^m),n)}
Previous Showing 11-20 of 46 results. Next