cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A326715 Values of n for which the denominator of (Sum_{prime p | n} 1/p - 1/n) is 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Jonathan Sondow, Jul 20 2019

Keywords

Comments

n is in the sequence iff either n = 1 or n is a prime or n is a Giuga number, by one definition of Giuga numbers A007850.

Examples

			a(30) = denominator(Sum_{prime p | 30} 1/p - 1/30) = denominator(1/2 + 1/3 + 1/5 - 1/30) = denominator(1/1) = 1, and 30 is a Giuga number.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local p;
       denom(add(1/p, p = numtheory:-factorset(n))-1/n)=1
    end proc:
    select(filter, [$1..300]); # Robert Israel, Dec 15 2020
  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Select[Range[148], f[#] == 1 &]

Formula

n such that A326690(n) = 1.

A094960 Positive integers k such that the derivative of the k-th Bernoulli polynomial B(k,x) contains only integer coefficients.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 28, 30, 36, 60
Offset: 1

Views

Author

Benoit Cloitre, Jun 19 2004

Keywords

Comments

From Max Alekseyev, Dec 08 2011: (Start)
There are no other terms below 10^9.
k belongs to this sequence if k*binomial(k-1,m)*Bernoulli(m) is an integer for each m in 0..k-1. (End)
From Max Alekseyev, Jun 04 2012: (Start)
If for a prime p >= 3, k ends with base-p digits a,b with a+b >= p, then for m = (a+1)*(p-1), the number k*binomial(k-1,m)*Bernoulli(m) is not an integer (it contains p in the denominator). For p=3, this implies that k == 5, 7, or 8 (mod 9) are not in this sequence; for p=5, this implies that k == 9, 13, 14, 17, 18, 19, 21, 22, 23, or 24 (mod 25) are not in this sequence; and so on.
Conjecture: for every integer k > 78, there exists a prime p >= 3 such that the sum of last two base-p digits of k is at least p. This conjecture would imply that this sequence is finite and 60 is the last term. (End)
The conjecture is true for all k such that k+1 is not a prime, a power of 2, or a Giuga number (A007850). In this case, there exists a prime p >= 3 such that the base-p representation of k ends in a,p-1 with a > 0. - Max Alekseyev, Feb 16 2021
The sequence is finite and is a subsequence of A366169. The terms are those numbers k where A324370(k) = 1. It remains to show that 60 is the last term. This is very likely, since the terms depend on the estimation of a product of primes satisfying certain p-adic conditions that is connected with A324370. A proven asymptotic formula related to that product implies that this sequence is finite. See Kellner 2017, 2023, and BLMS 2018. - Bernd C. Kellner, Oct 02 2023

Examples

			B(6,x) = x^6 - 3*x^5 + (5/2)*x^4 - (1/2)*x^2 + 1/42 so B'(6,x) contains only integer coefficients and 6 is in the sequence.
		

Crossrefs

Programs

  • Maple
    p := n -> if denom(diff(bernoulli(n, x), x)) = 1 then n else fi:
    seq(p(n), n=1..100); # Emeric Deutsch
  • Mathematica
    (* From Bernd C. Kellner, Oct 02 2023. (Start) *)
    (* k-th derivative of BP: *)
    k = 1; Select[Range[1000], Denominator[Together[D[BernoulliB[#, x],{x, k}]]] == 1&]
    (* Exact denominator formula: *)
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus@@IntegerDigits[n, p]];
    DBP[n_, k_] := Module[{m = n-k+1, fac = FactorialPower[n, k]}, If[n < 1 || k < 1 || n <= k, Return[1]]; Times@@Select[Prime[Range[PrimePi[(m+1)/(2 + Mod[m+1, 2])]]], !Divisible[fac, #] && SD[m, #] >= #&]];
    k = 1; Select[Range[1000], DBP[#, k] == 1&]
    (* End *)
  • PARI
    is_A094960(k) = !#select(x->(denominator(x)!=1), Vec(deriv(bernpol(k)))); \\ Michel Marcus, Feb 15 2021
    
  • Python
    from itertools import count, islice
    from sympy import Poly, diff, bernoulli
    from sympy.abc import x
    def A094960_gen(): # generator of terms
        return filter(lambda k:k<=1 or all(c.is_integer for c in Poly(diff(bernoulli(k,x),x)).coeffs()),count(1))
    A094960_list = list(islice(A094960_gen(),10)) # Chai Wah Wu, Oct 03 2023

Formula

k is a term if A324370(k) = 1. - Bernd C. Kellner, Oct 02 2023
k is a term <=> 0 = Sum_{j=0..k-1} k*binomial(k - 1, j) mod Clausen(j), where Clausen(n) = A160014(n, 1). - Peter Luschny, Oct 04 2023

A330068 Numbers k such that Sum_{i=1..k} i^A000010(k) == 2 (mod k).

Original entry on oeis.org

1, 3, 4, 12, 84, 3612, 94116, 4429004844, 104990793204
Offset: 1

Views

Author

Keywords

Comments

Apparently includes the sequence 2*A054377.
Additional terms include 4429004844, 104990793204, and 16980843167119376821413542522172.
a(10) > 10^13. - Giovanni Resta, Feb 27 2020

Crossrefs

Programs

  • Mathematica
    G[n_, k_] := G[n, k] = Mod[Sum[PowerMod[i, k, n], {i, 1, n}], n];
    Select[Range[2000], G[#, EulerPhi[#]] == 2 &]
    fa=FactorInteger;
    se[n_, k_] := Select[Transpose[fa[n]][[1]], IntegerQ[k/(# - 1)] &];
    sumlis[li_] := Sum[li[[i]], {i, 1, Length[li]}]
    Table[If[Mod[-n/se[n, EulerPhi[n]] // sumlis, n] == 2, n], {n, 1, 1000000}] // Union
  • PARI
    isok(n) = sumdiv(n, d, eulerphi(n/d) * Mod(d, n)^eulerphi(n)) == 2; \\ Daniel Suteu, Jan 13 2020

Extensions

a(8)-a(9) from Giovanni Resta, Feb 27 2020

A330069 Numbers k such that Sum_{i=1..k} i^A000010(k) == -2 (mod k).

Original entry on oeis.org

1, 4, 60, 1716, 3444, 132396, 4428816612, 48846257124
Offset: 1

Views

Author

Keywords

Comments

Apparently includes the sequence 2*A007850.
Additional terms include 4428816612, 48846257124, 865498410347676, 29474266940021148, 1101686782618260636, 488394001964999430175732692, 1108159829234141602577157118356, 3821334362841015969111519832677012.
a(9) > 10^13. - Giovanni Resta, Feb 27 2020

Crossrefs

Programs

  • Mathematica
    G[n_, k_] := G[n, k] = Mod[Sum[PowerMod[i, k, n], {i, 1, n}], n];
    Select[Range[2000], G[#, EulerPhi[#]] == n-2 &]
    fa=FactorInteger;
    se[n_, k_] := Select[Transpose[fa[n]][[1]], IntegerQ[k/(# - 1)] &];
    sumlis[li_] := Sum[li[[i]], {i, 1, Length[li]}]
    Table[If[Mod[-n/se[n, EulerPhi[n]] // sumlis, n] == n-2, n], {n, 1,
       1000000}] // Union
  • PARI
    isok(n) = sumdiv(n, d, eulerphi(n/d) * Mod(d, n)^eulerphi(n)) == -2; \\ Daniel Suteu, Jan 13 2020

Extensions

a(7)-a(8) from Giovanni Resta, Feb 27 2020

A346551 3-Sondow numbers: numbers k such that p^s divides k/p + 3 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 10, 18, 126, 5418, 141174, 6643507266, 157486189806
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 3 (mod k).
A positive integer k is a 3-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 3 for every prime power divisor p^s of k.
2) 3/k + Sum_{prime p|k} 1/p is an integer.
3) 3 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 3 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[1000000],Sondow[3][#]&]

Extensions

a(8)-a(9) from Martin Ehrenstein, Dec 31 2021

A346552 4-Sondow numbers: numbers k such that p^s divides k/p + 4 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 5, 8, 24, 168, 7224, 188232, 8858009688, 209981586408
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 4 (mod k).
A positive integer k is a 4-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 4 for every prime power divisor p^s of k.
2) 4/k + Sum_{prime p|k} 1/p is an integer.
3) 4 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 4 (mod k).
Other numbers in the sequence: 8858009688, 209981586408, 33961686334238753642827085044344

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[10000000],Sondow[4][#]&]
  • PARI
    isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 4) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022

Extensions

a(8)-a(9) verified by Martin Ehrenstein, Jan 21 2022

A346553 5-Sondow numbers: numbers k such that p^s divides k/p + 5 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 3, 14, 66, 1974, 307146, 3270666, 42404405538, 318501038226
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 5 (mod k).
A positive integer k is a 5-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 5 for every prime power divisor p^s of k.
2) 5/k + Sum_{prime p|k} 1/p is an integer.
3) 5 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 5 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]}, IntegerQ[mu/n+Sum[1/fa[[i, 1]], {i, Length[fa]}]]]
    Select[Range[10^7], Sondow[5][#]&]
  • PARI
    isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 5) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022

Extensions

a(9)-a(10) from Martin Ehrenstein, Jan 19 2022

A346554 6-Sondow numbers: numbers k such that p^s divides k/p + 6 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 4, 7, 9, 20, 36, 252, 10836, 282348, 13287014532, 314972379612
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 6 (mod k).
A positive integer k is a 6-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 6 for every prime power divisor p^s of k.
2) 6/k + Sum_{prime p|k} 1/p is an integer.
3) 6 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 6 (mod k).
Other numbers in the sequence: 13287014532, 314972379612, 50942529501358130464240627566516

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[10000000],Sondow[6][#]&]
  • PARI
    isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 6) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022

Extensions

a(10)-a(11) verified by Martin Ehrenstein, Jan 21 2022

A198391 Numbers m such that Sum_{i=1..k} (1-1/p_i) + Product_{i=1..k} (1-1/p_i) is an integer, where p_i are the k prime factors of m (with multiplicity).

Original entry on oeis.org

2, 15, 20, 272, 476, 19024, 47425, 65792, 125172, 216900, 539280, 1222976, 1372736, 2770496, 3494336, 5321808, 5844528, 6177168, 7032528, 8885808, 20670768, 60727876, 69081344, 82724356, 95579136, 544382208, 907440192, 1657497600, 4295032832, 5048574976
Offset: 1

Views

Author

Paolo P. Lava, Oct 24 2011

Keywords

Comments

The numbers of the sequence are solutions of the differential equation m’=(k-a)*m+b, which can be written as A003415(m)=(k-a)*m+A003958(m), where k is the number of prime factors of m, and a is the integer Sum_{i=1..k} (1-1/p_i) + Product_{i=1..k} (1-1/p_i).
If k = a we have m’ = b or A003415(m) = A003958(m). For instance 15 has prime factors 3, 5; its arithmetic derivative is 15’ = 8 and b = 3*5 - 3 - 5 + 1 = 8. The term 47425 has prime factors 5, 5, 7, 271. Its arithmetic derivative is 47425’ = 25920 and b = 5*5*7*271 - 5*5*7 - 5*5*271 - 5*7*271 - 5*7*271 + 5*5 + 5*7 + 5*271 + 5*7 + 5*271 + 7*271 - 5 - 5 - 7 - 271 + 1 = 25920.
The numbers of the sequence satisfy also Sum_{i=1..k} (1+1/p_i) - Product_{i=1..k} (1-1/p_i) = some integer.

Examples

			125172 has prime factors 2, 2, 3, 3, 3, 19, 61. 1 - 1/2 + 1 - 1/2 + 1 - 1/3 + 1 - 1/3 + 1 - 1/3 + 1 - 1/19 + 1 - 1/61 = 5715/1159 is the sum over the 1-1/p_i. (1-1/2) * (1-1/2) * (1-1/3) * (1-1/3) * (1-1/3) * (1-1/19) * (1-1/61) = 80/1159 is the product of the 1-1/p_i. The sum over sum and product is 5715/1159 + 80/1159 = 5, an integer.
		

Crossrefs

Programs

  • Maple
    isA198391 := proc(n)
        p := ifactors(n)[2] ;
        add(op(2,d)-op(2,d)/op(1,d),d=p) + mul((1-1/op(1,d))^op(2,d),d=p) ;
        type(%,'integer') ;
    end proc:
    for n from 2 to 20000000 do
        if isA198391(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Nov 26 2011
  • Mathematica
    Select[Range[2, 10^5], IntegerQ[(Plus @@ # + Times @@ #) &@ (1 - 1/ Flatten[ Table[#1, {#2}] & @@@ FactorInteger@#])] &] (* Giovanni Resta, May 23 2016 *)

Extensions

Missing a(23) and a(26)-a(30) from Giovanni Resta, May 23 2016

A342922 Numbers k such that A342925(k) = k + 2*A003415(k).

Original entry on oeis.org

6, 28, 29, 496, 857, 1721, 8128, 164284, 6511664, 33550336, 400902412, 8589869056
Offset: 1

Views

Author

Antti Karttunen, Apr 07 2021

Keywords

Comments

Question: Are all odd terms in A001359?
Certainly any prime p such that A003415(p+1) = p + 2 satisfies the equation. See comments in A007850.

Crossrefs

Programs

  • Mathematica
    Select[Range[2*10^5], #3 == #1 + 2 #2 & @@ Prepend[Map[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &, {#, DivisorSigma[1, #]}], #] &] (* Michael De Vlieger, Feb 25 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342925(n) = A003415(sigma(n));
    isA342922(n) = (A342925(n)==(n+(2*A003415(n))));

Extensions

Terms a(11) and a(12) from Antti Karttunen, Feb 25 2022
Previous Showing 11-20 of 52 results. Next