cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A069819 Numbers k such that 1/(Sum_{p|k} (1/p) - 1), where p are the prime divisors of k, is a positive integer.

Original entry on oeis.org

30, 60, 90, 120, 150, 180, 240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810, 858, 900, 960, 1080, 1200, 1350, 1440, 1500, 1620, 1716, 1722, 1800, 1920, 2160, 2250, 2400, 2430, 2574, 2700, 2880, 3000, 3240, 3432, 3444, 3600, 3750, 3840, 4050, 4320, 4500
Offset: 1

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

Sequence is generated by A007850(n). For example: 30, 858, 1722 (30 = 2*3*5, 858 = 2*3*11*13, 1722 = 2*3*11*13) generate numbers of the form 2^a*3^b*5^c (A143207), 2^a*3^b*7^c*41^d, 2^a*3^b*11^c*13^d, (a,b,c,d => 1), which are in the sequence.
Equivalently, numbers k such that Sum_{p|k} 1/p - Product_{p|k} 1/p, where p are the prime divisors of k, is a positive integer. All these terms have at least 3 prime factors. When k is a term and p is a prime divisor of k, then p*k is another term (see Diophante link). - Bernard Schott, Dec 19 2021

Examples

			For k = 30 = 2*3*5, 1/(Sum_{p|n} (1/p) - 1) = 1/(1/2 + 1/3 + 1/5 - 1) = 30 hence 30 is in the sequence.
		

Crossrefs

Cf. A007850.
A143207 is a subsequence.

Programs

  • Mathematica
    Select[Range[4320], (sum = Plus @@ (1/FactorInteger[#][[;;,1]])) > 1 && IntegerQ[1/(sum - 1)] &] (* Amiram Eldar, Feb 03 2020 *)
  • PARI
    isok(k) = my(f=factor(k), x=1/(sum(i=1, #f~, 1/f[i,1]) -1)); (x>1) && (denominator(x)==1); \\ Michel Marcus, Dec 19 2021
  • Python
    from sympy import factorint
    from fractions import Fraction
    def ok(n):
        s = sum(Fraction(1, p) for p in factorint(n))
        return s > 1 and (s - 1).numerator == 1
    print([k for k in range(1, 4501) if ok(k)]) # Michael S. Branicky, Dec 19 2021
    

A189639 Numbers n such that n'' = n'+1 where n' and n'' are respectively the first and the second arithmetic derivative of n (A003415).

Original entry on oeis.org

161, 209, 221, 1935, 4265, 15941, 22217, 24041, 25637, 30377, 38117, 39077, 48617, 49097, 55877, 68441, 73817, 76457, 80357, 88457, 95237, 98117, 99941, 105641, 110057, 115397, 122537, 130217, 131141, 136517, 143237, 147941, 148697, 152357, 154457, 159077
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 24 2011

Keywords

Comments

The arithmetic derivative of a(n) is a Giuga's number A007850 (solution of n' = n+1).

Examples

			161' = 30, 161'' = 30' = 31 ==> 161'' = 161'+1 so 161 is a term.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a189710 n = a189710_list !! (n-1)
    a189710_list = elemIndices 0 $
       zipWith (-) (map a003415 a003415_list) (map pred a003415_list)
    -- Reinhard Zumkeller, May 09 2011
  • PARI
    /* using Michael B. Porter's code from A003415: */
    A003415(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))} /* arithmetic derivative */
    for(n=1,10^6,d1=A003415(n);d2=A003415(d1);if(d2==d1+1,print1(n,", "))); /* show terms */
    /* Joerg Arndt, Apr 25 2011 */
    

A369469 a(n) = number of integer solutions to 1 <= x1 < x2 < ... < xn to 1/x1 + ... + 1/xn = (1 - 1/x1) * ... * (1 - 1/xn).

Original entry on oeis.org

1, 1, 1, 24, 293, 9219, 787444
Offset: 1

Views

Author

Max Alekseyev, Jan 23 2024

Keywords

Comments

For any n, A369470(n) >= a(n) >= 1 (see A369607).

Crossrefs

A369470 a(n) = number of integer solutions to 1 <= x1 <= x2 <= ... <= xn to 1/x1 + ... + 1/xn = (1 - 1/x1) * ... * (1 - 1/xn).

Original entry on oeis.org

1, 1, 2, 35, 455, 13624, 1176579
Offset: 1

Views

Author

Max Alekseyev, Jan 23 2024

Keywords

Comments

For any n, a(n) >= A369469(n) >= 1 (see A369607).

Crossrefs

A075461 List of solutions to the Znám problem sorted first by length, then lexicographically.

Original entry on oeis.org

2, 3, 7, 47, 395, 2, 3, 11, 23, 31, 2, 3, 7, 43, 1823, 193667, 2, 3, 7, 47, 403, 19403, 2, 3, 7, 47, 415, 8111, 2, 3, 7, 47, 583, 1223, 2, 3, 7, 55, 179, 24323, 2, 3, 7, 43, 1807, 3263447, 2130014000915, 2, 3, 7, 43, 1807, 3263591, 71480133827, 2, 3, 7, 43
Offset: 1

Views

Author

Eric W. Weisstein, Sep 16 2002

Keywords

Examples

			Starts with A075441(5)=2 5-term solutions 2,3,7,47,395; 2,3,11,23,31, followed by A075441(6)=5 6-term solutions, etc.
		

Crossrefs

Extensions

Edited by Max Alekseyev, Jan 25 2024

A187929 Odd numbers k such that 1^((k-1)/2) + 2^((k-1)/2) + .... + (k-1)^((k-1)/2) == 0 (mod k).

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 23, 27, 29, 31, 35, 37, 39, 41, 43, 47, 51, 53, 55, 59, 61, 63, 67, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 119, 123, 125, 127, 131, 135, 137, 139, 143, 147, 149, 151, 155, 157, 159
Offset: 1

Views

Author

Keywords

Comments

Asymptotic density is 0.379...

Crossrefs

Cf. A007850.

Programs

  • Mathematica
    gi[n_]:=Mod[Sum[PowerMod[j,(n-1)/2,n],{j,n-1}],n]; Select[ Range[1,300,2], gi[#]==0&]
  • PARI
    is(n)=my(e=(n-1)/2);sum(k=1,n-1,Mod(k,n)^e)==0;
    select(is,vector(1000,i,2*i-1)) \\ on older versions, switch the arguments
    \\ Charles R Greathouse IV, Mar 19 2011

A189941 Numbers n such that n''' = n''+ 1 where n'' and n''' are respectively the second and the third arithmetic derivative of n.

Original entry on oeis.org

186, 258, 322, 338, 3866, 4326, 4775, 18830, 19122, 27586, 34330, 34538, 41626, 46762, 49858, 49922, 54298, 55810, 70510, 82122, 86938, 89102, 101042, 101706, 106442, 110510, 112910, 118586, 120822, 129722, 133430, 134714, 150742, 157362, 158235, 163410
Offset: 1

Views

Author

Giorgio Balzarotti, May 01 2011

Keywords

Comments

The second arithmetic derivative of a(n) is a Giuga's number A007850 (solution of n'=n+1).

Examples

			186'= 161; 186"=161' = 30; 186"'=30'= 31-> 186'''= 186" +1 -> a(1)=186.
		

Crossrefs

Programs

  • Maple
    Using Porter's code from A003415 der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2])
    for i from 1 to n do a:=der(der(der(i)))-der(der(i))-1: if a=0 then j:=j+1; A[j]:=i: end if od

A190014 a(0)=0, a(1)=1, if n = (n-1)', then a(n)=0 otherwise a(n)=2*a((n-1)'), where n' is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 0, 2, 2, 4, 2, 8, 2, 4, 4, 16, 2, 8, 2, 8, 4, 4, 2, 8, 2, 4, 8, 16, 2, 4, 8, 16, 32, 4, 2, 0, 2, 4, 4, 16, 4, 4, 2, 8, 8, 4, 2, 8, 2, 4, 16, 8, 2, 32, 4, 8, 4, 16, 2, 512, 8, 8, 16, 0, 2, 8, 2, 8, 16, 4, 4, 16, 2, 4, 16, 0, 2, 16, 2, 16, 1024, 4, 4, 0, 2, 256, 4, 16, 2, 8, 16, 8, 4, 4, 2, 32, 4, 8, 8, 64, 4, 4, 2, 8, 32, 4
Offset: 0

Views

Author

Paolo P. Lava, May 04 2011

Keywords

Comments

Only power of 2 and zeros. If p is prime than a(p+1)=2.
If n’>n+1 than a(n+1) is not immediately available. It is necessary to find a(n’)=2*a((n’-1)’) and, if necessary, to repeat the process until a term can be calculate. For instance:
a(9)=2*a(12) -> a(12)=2 and therefore a(9)=4.
Again: a(55)=2*a(81) -> a(81)=2*a(176) -> a(176)=8*a(112) -> a(112)=16 and therefore a(176)=128 -> a(81)=256 -> a(55)=512.
First zero at a(31)=2*a(31) and for all Giuga numbers plus one (31, 859, 1723, 66199, etc.). This because the so far known Giuga numbers satisfy the equation n’=n+1. Other zeros for a(59)=8*a(31), a(71)=16*a(31), a(79)=32*a(31), a(106)=32*a(31), etc.
The general equation a(n+1)=k*a(n’), with k integer and |k|>1, a(0)=0, a(1)=1, leads to the following sequence: 0, 1, 0, k, k, k^2, k, k^3,k, k^2, k^2, k^4, k, k^3, k, k^3, k^2, k^2, k, k^3, etc.
For k=1 or k=-1 we get and incongruence because of a(31)=a(31).

Examples

			a(0)=0
a(1)=1
a(2)=a(1+1)=2*a(1')=2*a(0)=0
a(3)=a(2+1)=2*a(2')=2*a(1)=2
a(4)=a(3+1)=2*a(3')=2*a(1)=2
a(5)=a(4+1)=2*a(4')=2*a(4)=4
a(6)=a(5+1)=2*a(5')=2*a(1)=2
a(7)=a(6+1)=2*a(6')=2*a(5)=8  etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local a,f,n,p,pfs,t;
    a:=array(0..100000); a[0]:=0; a[1]:=1; t:=2; lprint(0,a[0]); lprint(1,a[1]);
    for n from 1 by 1 to i do
        pfs:=ifactors(n)[2]; f:=n*add(op(2,p)/op(1,p),p=pfs);
        a[n+1]:=t*a[f]; lprint(n+1,a[n+1]);
    od;
    end:
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; a[0] = 0; a[1] = 1; a[n_] := a[n] = Module[{d = dn[n - 1]}, If[d == n, 0, 2 a[d]]]; Array[a,100,0] (* T. D. Noe, May 05 2011 *)

A203617 Numbers m such that (m'-1)' = m+1, where m' denotes the arithmetic derivative of m.

Original entry on oeis.org

30, 210, 246, 858, 1722, 66198, 235290, 282342, 1929378, 1976394, 2214408306
Offset: 1

Views

Author

Paolo P. Lava, Jan 20 2012

Keywords

Comments

The differential equation whose solutions are the Giuga numbers is m' = k*m+1, with k a positive integer. Let us rewrite the equation as m'-1 = k*m and then take the derivative: (m'-1)' = (k*m)' = k'*m + k*m' = k'*m + k*(k*m+1) = (k'+k^2)*m+k.
Let k=1: (m'-1)' = m+1. The solutions of this equation are the Giuga numbers plus pairs of numbers (x,y) for which x' = y+1 and y' = x+1.
A007850 is a subsequence of this sequence.
a(11) > 10^9. - Michel Marcus, Nov 05 2014
a(12) > 10^10. - Giovanni Resta, Jun 04 2016

Examples

			235290' = 282343; (282343 - 1)' = 282342' = 235291 = 235290 + 1, so 235290 is a term.
282342' = 235291; (235291 - 1)' = 235290' = 282343 = 282342 + 1, so 282342 is a term.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local a,n,p,pfs;
    for n from 1 to i do
      pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs) ;
      pfs:=ifactors(a-1)[2]; a:=(a-1)*add(op(2,p)/op(1,p),p=pfs) ;
      if a=n+1 then print(n); fi;
    od;
    end:
    P(10000000);
  • PARI
    ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);
    isok(n) = my(m = ad(n)-1); (m) && ad(m) == n+1; \\ Michel Marcus, Nov 05 2014

Extensions

a(11) from Giovanni Resta, Jun 04 2016

A235139 Twin primes p, p+2 such that p+1 is a primary pseudoperfect number.

Original entry on oeis.org

5, 7, 41, 43, 47057, 47059
Offset: 1

Views

Author

Jonathan Sondow and Emmanuel Tsukerman, Jan 04 2014

Keywords

Comments

Same as twin primes p, p+2 such that (p+1)*(p+2) is a primary pseudoperfect number (A054377). Appears also to be same as twin primes p, p+2 such that p*(p+1) is a Giuga number (A007850). See the link "The p-adic order of power sums...": Theorem 8, Example 1, and Question 1.
Is it always true that if a primary pseudoperfect number N > 2 is adjacent to a prime N-1 or N+1, then in fact N lies between twin primes N-1, N+1? For all 7 known primary pseudoperfect numbers N > 2, either both N-1 and N+1 are prime or neither is prime.
See A235364 for a similar property of Giuga numbers.

Examples

			For the twin primes (p,p+2) = (5, 7), (41, 43), (47057, 47059), the numbers p+1 = 6, 42, 47058 and (p+1)*(p+2) = 42, 1806, 2214502422 are primary pseudoperfect numbers, and p*(p+1) = 30, 1722, 2214408306 are Giuga numbers.
		

Crossrefs

Programs

  • Mathematica
    A054377 = Cases[Import["https://oeis.org/A054377/b054377.txt", "Table"], {, }][[All, 2]];
    lst = {}; For[i = 1, i <= Length[A054377], i++, n = A054377[[i]];
    If[PrimeQ[n + 1] && PrimeQ[n - 1], AppendTo[lst, n - 1]; AppendTo[lst, n + 1]]]; lst (* Robert Price, Mar 14 2020 *)
Previous Showing 31-40 of 52 results. Next