cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A239108 Number of hybrid 5-ary trees with n internal nodes.

Original entry on oeis.org

1, 2, 19, 253, 3920, 66221, 1183077, 21981764, 420449439, 8223704755, 163727846678, 3307039145618, 67600147666909, 1395822347989531, 29070233296701815, 609950649080323320, 12881240945694949696, 273590092192962485985, 5840400740191969187922
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2014

Keywords

Crossrefs

Programs

  • Mathematica
    (1/x InverseSeries[x(1 - x - x^2)^4/(1 + x)^4 + O[x]^20])^(1/4) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^4)*(1 + x*A^5)); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^4/(1+x +x*O(x^n))^4))^(1/4), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(3*m)/m))); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(4*n+1)/(4*n+1), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

Formula

From Paul D. Hanna, Mar 30 2014: (Start)
G.f. A(x) satisfies:
(1) A(x) = (1 + x*A(x)^4) * (1 + x*A(x)^5).
(2) A(x) = ( (1/x)*Series_Reversion( x*(1-x-x^2)^4/(1+x)^4 ) )^(1/4).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(3*n)/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^(4*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(5) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(4*n).
(6) A(x) = G(x*A(x)^3) where G(x) = A(x/G(x)^3) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^5).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(4*n+1) / (4*n+1).
(End)

A239109 Number of hybrid 6-ary trees with n internal nodes.

Original entry on oeis.org

1, 2, 23, 375, 7138, 148348, 3262975, 74673216, 1759690865, 42412172598, 1040644972314, 25907046248766, 652763779424538, 16614703783094140, 426563932954831827, 11033640140115676862, 287265076610919864178, 7522060666571155198520, 197969862318742854908470
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2014

Keywords

Crossrefs

Programs

  • Mathematica
    (1/x InverseSeries[x*(1 - x - x^2)^5/(1 + x)^5 + O[x]^20])^(1/5) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^5)*(1 + x*A^6)); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^5/(1+x +x*O(x^n))^5))^(1/5), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(5*m)/m))); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(5*n+1)/(5*n+1), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

Formula

From Paul D. Hanna, Mar 30 2014: (Start)
G.f. A(x) satisfies:
(1) A(x) = (1 + x*A(x)^5) * (1 + x*A(x)^6).
(2) A(x) = ( (1/x)*Series_Reversion( x*(1-x-x^2)^5/(1+x)^5 ) )^(1/5).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(4*n)/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^(5*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(5) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(5*n).
(6) A(x) = G(x*A(x)^4) where G(x) = A(x/G(x)^4) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^6).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(5*n+1) / (5*n+1).
(End)

A215715 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^4).

Original entry on oeis.org

1, 2, 13, 118, 1242, 14227, 172177, 2165732, 28032668, 370944717, 4995412647, 68239105203, 943278064473, 13169938895473, 185453340189492, 2630813161415976, 37561512615867450, 539336703889993006, 7783290731579783544, 112828761898680983141, 1642222504807143423470
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2012

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = (1 + x^r*F(x)^(p+1)) * (1 + x^(r+s)*F(x)^(p+q+1)), then
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ).
The radius of convergence of g.f. A(x) is r = 0.06368546004073732405169450... with A(r) = 1.3960637117611795281240000742797488619448782873... where y=A(r) satisfies 6*y^5 + 17*y^4 - 46*y^3 + 16*y^2 + 4*y - 8 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 13*x^2 + 118*x^3 + 1242*x^4 + 14227*x^5 + ...
Related expansions.
A(x)^2 = 1 + 4*x + 30*x^2 + 288*x^3 + 3125*x^4 + 36490*x^5 + ...
A(x)^4 = 1 + 8*x + 76*x^2 + 816*x^3 + 9454*x^4 + 115260*x^5 + ...
A(x)^6 = 1 + 12*x + 138*x^2 + 1648*x^3 + 20427*x^4 + 260934*x^5 + ...
where A(x) = 1 + x*(A(x)^2 + A(x)^4) + x^2*A(x)^6.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x*A(x) + (1 + 2^2*A(x)^2 + A(x)^4)*x^2*A(x)^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3*A(x)^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4*A(x)^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5*A(x)^5/5 + ...
Explicitly,
log(A(x)) = 2*x + 22*x^2/2 + 284*x^3/3 + 3878*x^4/4 + 54607*x^5/5 + 784144*x^6/6 + 11414265*x^7/7 + 167819014*x^8/8 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1+Sqrt[1-4*x*(1+x)^2])^2/(4*(1+x)^2),{x,0,20}],x]],x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^2)*(1 + x*A^4)); polcoeff(A, n)}
    for(n=0,31,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff( sqrt((1/x)*serreverse( x*(1 + sqrt(1 - 4*x*(1+x)^2 +x*O(x^n)))^2/(4*(1+x)^2))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^(2*j))*x^m*A^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^(2*j))*x^m*A^(3*m)/m))); polcoeff(A, n)}

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x*(1 + sqrt(1 - 4*x*(1+x)^2))^2/(4*(1+x)^2) ) ).
(2) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(2*k) ).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(3*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^(2*k) ).
The formal inverse of the g.f. A(x) is (sqrt(x^4 + 4*x^3 - 2*x^2 + 1) - (1+x^2))/(2*x^4).
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 15.70217125479403872... is the root of the equation -1024 - 3840*d + 26368*d^2 - 58644*d^3 + 1933*d^4 + 108*d^5 = 0 and c = 0.320114409... - Vaclav Kotesovec, Sep 17 2013
a(n) = Sum_{k=0..n} binomial(2*n+2*k+1,k) * binomial(2*n+2*k+1,n-k) / (2*n+2*k+1). - Seiichi Manyama, Jul 18 2023

A216314 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + 2*x*A(x)^2).

Original entry on oeis.org

1, 3, 17, 121, 965, 8247, 73841, 683713, 6493145, 62898859, 619079889, 6173490857, 62239144525, 633323532783, 6496052173665, 67093423506049, 697181754821297, 7283521984427283, 76455801614169809, 806004056649062937, 8529783421905380629, 90584730265930813607
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2012

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.08774268876242660659654020... with A(r) = 2.04748732367111203761312028274219344812311691... where y=A(r) satisfies 6*y^3 - 14*y^2 + 4*y - 1 = 0.
r = 1/(((40465 + 387*sqrt(129))^(2/3) + 1174 + 34*(40465 + 387*sqrt(129))^(1/3)) / (40465+387*sqrt(129))^(1/3)/9). - Vaclav Kotesovec, Sep 17 2013

Examples

			G.f.: A(x) = 1 + 3*x + 17*x^2 + 121*x^3 + 965*x^4 + 8247*x^5 + 73841*x^6 +...
Related expansions.
A(x)^2 = 1 + 6*x + 43*x^2 + 344*x^3 + 2945*x^4 + 26398*x^5 + 244615*x^6 +...
A(x)^3 = 1 + 9*x + 78*x^2 + 696*x^3 + 6399*x^4 + 60321*x^5 + 580316*x^6 +...
where A(x) = 1 + A(x)*(1+2*A(x))*x + 2*A(x)^3*x^2.
The g.f. also satisfies the series:
A(x) = 1 + 3*x*A(x) + 8*x^2*A(x)^2 + 22*x^3*A(x)^3 + 60*x^4*A(x)^4 + 164*x^5*A(x)^5 + 448*x^6*A(x)^6 +...+ A028859(n)*x^n*A(x)^n +...
The logarithm of the g.f. equals the series:
log(A(x)) = (1*2 + 1/A(x))*x*A(x) + (1*2^2 + 2^2*2/A(x) + 1/A(x)^2)*x^2*A(x)^2/2 +
(1*2^3 + 3^2*2^2/A(x) + 3^2*2/A(x)^2 + 1/A(x)^3)*x^3*A(x)^3/3 +
(1*2^4 + 4^2*2^3/A(x) + 6^2*2^2/A(x)^2 + 4^2*2/A(x)^3 + 1/A(x)^4)*x^4*A(x)^4/4 +
(1*2^5 + 5^2*2^4/A(x) + 10^2*2^3/A(x)^2 + 10^2*2^2/A(x)^3 + 5^2*2/A(x)^4 + 1/A(x)^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = 3*x + 25*x^2/2 + 237*x^3/3 + 2361*x^4/4 + 24203*x^5/5 + 252757*x^6/6 + 2674185*x^7/7 + 28567105*x^8/8 +...+ L(n)*x^n/n +...
where L(n) = [x^n] (1+x)^n/(1-2*x-2*x^2)^n.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1/x * InverseSeries[Series[x*(1 - 2*x - 2*x^2)/(1+x),{x,0,20}],x],x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + 2*x*(A+x*O(x^n))^2)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff( (1/x)*serreverse( x*(1-2*x-2*x^2)/(1+x +x*O(x^n))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*2^(m-j)/A^j)*x^m*A^m/m))); polcoeff(A, n)}
    for(n=0, 31, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * 2^(n-k)/A(x)^k ).
(2) A(x) = (1/x) * Series_Reversion( x*(1 - 2*x - 2*x^2)/(1+x) ).
(3) A(x) = Sum_{n>=0} A028859(n) * x^n * A(x)^n, where g.f. of A028859 = (1+x)/(1-2*x-2*x^2).
The formal inverse of the g.f. A(x) is (sqrt(1-4*x+12*x^2) - (1+2*x))/(4*x^2).
a(n) = [x^n] ( (1+x)/(1-2*x-2*x^2) )^(n+1) / (n+1).
Recurrence: 3*n*(n+1)*(43*n-76)*a(n) = n*(1462*n^2 - 3315*n + 1274)*a(n-1) + (86*n^3 - 324*n^2 + 523*n - 330)*a(n-2) + (n-2)*(2*n-5)*(43*n-33)*a(n-3)
a(n) ~ 1/516*sqrt(86)*sqrt((1448486261 + 1803807*sqrt(129))^(1/3)*((1448486261 + 1803807*sqrt(129))^(2/3) + 1280110 + 1118*(1448486261 + 1803807*sqrt(129))^(1/3)))/(1448486261 + 1803807*sqrt(129))^(1/3) * (((40465 + 387*sqrt(129))^(2/3) + 1174 + 34*(40465 + 387*sqrt(129) )^(1/3)) / (40465+387*sqrt(129))^(1/3)/9)^n / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 17 2013
a(n) = Sum_{k=0..n} 2^k * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1). - Seiichi Manyama, Sep 08 2024

A239107 Number of hybrid 4-ary trees with n internal nodes.

Original entry on oeis.org

1, 2, 15, 155, 1854, 24124, 331575, 4736345, 69616637, 1046054129, 15995716263, 248111418112, 3894303176880, 61737213540306, 987116931080661, 15899835212249761, 257758369219909534, 4202381519278498915, 68859442092723799788, 1133401910867109123200
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2014

Keywords

Crossrefs

Programs

  • Mathematica
    (1/x InverseSeries[x(1 - x - x^2)^3/(1 + x)^3 + O[x]^21])^(1/3) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^3)*(1 + x*A^4)); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^3/(1+x +x*O(x^n))^3))^(1/3), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(2*m)/m))); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(3*m)/m))); polcoeff(A, n) \\ Paul D. Hanna, Mar 30 2014
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(3*n+1)/(3*n+1), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

Formula

From Paul D. Hanna, Mar 30 2014: (Start)
G.f. A(x) satisfies:
(1) A(x) = (1 + x*A(x)^3) * (1 + x*A(x)^4).
(2) A(x) = ( (1/x)*Series_Reversion( x*(1-x-x^2)^3/(1+x)^3 ) )^(1/3).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^(3*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(5) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(3*n).
(6) A(x) = G(x*A(x)^2) where G(x) = A(x/G(x)^2) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^4).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(3*n+1) / (3*n+1).
(End)
a(n) = 1/(3*n+1) * Sum_{i=0..n} C(3*n+i,i)*C(3*n+i+1,n-i). - Alois P. Heinz, Jul 10 2014

A274735 G.f. satisfies A(x) = (1 + x*A(x))^3 * (1 + x*A(x)^2).

Original entry on oeis.org

1, 4, 26, 210, 1901, 18445, 187524, 1971672, 21263360, 233907762, 2614446624, 29607343948, 338977591904, 3917185497535, 45629006313280, 535199773167207, 6315789123860388, 74932400322972992, 893276792585933870, 10694510040508714014, 128531711285410216883, 1550159476645634696615, 18755239991772817629972, 227577929298568261967650, 2768820313297861609739979
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2016

Keywords

Comments

More generally, if G(x) satisfies
G(x) = (1 + a*x*G(x))^m * (1 + b*x*G(x)^2), then
G(x) = (1/x) * Series_Reversion( x * (1 - b*x*(1 + a*x)^m) / (1 + a*x)^m ).

Examples

			G.f.: A(x) = 1 + 4*x + 26*x^2 + 210*x^3 + 1901*x^4 + 18445*x^5 + 187524*x^6 + 1971672*x^7 + 21263360*x^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,n, A = (1 + x*A)^3 * (1 + x*A^2) + x*O(x^n) ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x*(1+x)^3)/(1+x +x^2*O(x^n) )^3 ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1/x) * Series_Reversion( x * (1 - x*(1+x)^3) / (1+x)^3 ).
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(3*n+3*k+3,n-k). - Seiichi Manyama, Jan 27 2024

A364331 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).

Original entry on oeis.org

1, 2, 15, 163, 2070, 28698, 421015, 6425644, 100977137, 1622885389, 26551709946, 440744175801, 7404449354076, 125657625548824, 2150963575012295, 37094953102567208, 643904274979347286, 11241232087809137759, 197247501440314516840, 3476787208220672891388, 61533794803235280779261
Offset: 0

Views

Author

Seiichi Manyama, Jul 18 2023

Keywords

Crossrefs

Programs

  • Maple
    A364331 := proc(n)
        add( binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k)/(2*n+3*k+1),k=0..n) ;
    end proc:
    seq(A364331(n),n=0..70); # R. J. Mathar, Jul 25 2023
  • PARI
    a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k) / (2*n+3*k+1).
x/series_reversion(x*A(x)) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + ..., the g.f. of A215623. - Peter Bala, Sep 08 2024

A262910 a(n) = Sum_{k=0..n} binomial(k+n-1,k)*binomial(k+n,2*k).

Original entry on oeis.org

1, 2, 10, 59, 366, 2337, 15205, 100235, 667222, 4474733, 30188335, 204646532, 1392850785, 9511878729, 65144238981, 447263887479, 3077459618886, 21215286546705, 146500755609415, 1013180180867125, 7016536189029551, 48650933146617728, 337709155342663620
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 04 2015

Keywords

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([-n, n, n+1], [1/2, 1], -1/4):
    seq(round(evalf(a(n), 32)), n=0..21); # Peter Luschny, Oct 08 2015
  • Mathematica
    Table[Sum[Binomial[k+n-1,k]*Binomial[k+n,2*k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Oct 04 2015 *)
  • Maxima
    B(x):=sum(sum(binomial(i+n-1,i)*binomial(i+n,2*i+1),i,0,n-1)/n*x^n,n,1,30);
    taylor(x*diff(B(x),x)/B(x),x,0,20);
    
  • PARI
    a(n) = sum(k=0, n, binomial(k+n-1,k)*binomial(k+n,2*k));
    vector(50, n, a(n-1)) \\ Altug Alkan, Oct 04 2015

Formula

G.f.: A(x) = x*B'(x)/B(x), where B(x)/x is g.f. of A007863.
Recurrence: 5*(n-1)*n*(35*n^2 - 143*n + 138)*a(n) = 2*(n-1)*(630*n^3 - 2889*n^2 + 3746*n - 1200)*a(n-1) - 2*(70*n^4 - 426*n^3 + 811*n^2 - 589*n + 150)*a(n-2) + 2*(n-3)*(2*n - 3)*(35*n^2 - 73*n + 30)*a(n-3). - Vaclav Kotesovec, Oct 04 2015
a(n) = hypergeom([-n, n, n+1], [1/2, 1], -1/4). - Peter Luschny, Oct 08 2015
a(n) = A155112(2n,n). - Alois P. Heinz, Sep 29 2022

A192131 G.f. satisfies: A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^3*A(x)^k) * x^n/n ).

Original entry on oeis.org

1, 2, 9, 53, 357, 2611, 20180, 162276, 1344455, 11400944, 98498545, 864068233, 7677040177, 68947431898, 624960856374, 5710352911097, 52542826413590, 486458467209032, 4528570067254485, 42365044032385154, 398081015128641213
Offset: 0

Views

Author

Paul D. Hanna, Jun 24 2011

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 53*x^3 + 357*x^4 + 2611*x^5 + 20180*x^6 +...
where the g.f. satisfies:
log(A(x)) = (1 + A(x))*x + (1 + 8*A(x) + A(x)^2)*x^2/2 + (1 + 27*A(x) + 27*A(x)^2 + A(x)^3)*x^3/3 + (1 + 64*A(x) + 216*A(x)^2 + 64*A(x)^3 + A(x)^4)*x^4/4 +...
		

Crossrefs

Cf. A007863 (variant).

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3*(A+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}

A193589 Augmentation of the Fibonacci triangle A193588. See Comments.

Original entry on oeis.org

1, 1, 2, 1, 4, 7, 1, 6, 18, 31, 1, 8, 33, 90, 154, 1, 10, 52, 185, 481, 820, 1, 12, 75, 324, 1065, 2690, 4575, 1, 14, 102, 515, 2006, 6276, 15547, 26398, 1, 16, 133, 766, 3420, 12468, 37711, 92124, 156233, 1, 18, 168, 1085, 5439, 22412, 78030, 230277
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2011

Keywords

Comments

For an introduction to the unary operation augmentation as applied to triangular arrays or sequences of polynomials, see A193091.
Regarding A193589, if the triangle is written as (w(n,k)), then w(n,n)=A007863(n); w(n,n-1)=A011270; and
(col 3)=A033537.

Examples

			First 5 rows of A193588:
1
1....2
1....2....3
1....2....3....5
1....2....3....5....8
First 5 rows of A193589:
1
1....2
1....4....7
1....6....18...31
1....8....33...90...154
		

Crossrefs

Programs

  • Mathematica
    p[n_, k_] := Fibonacci[k + 2]
    Table[p[n, k], {n, 0, 5}, {k, 0, n}]  (* A193588 *)
    m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
    TableForm[m[4]]
    w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
    v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
    v[n_] := v[n - 1].m[n]
    TableForm[Table[v[n], {n, 0, 6}]]  (* A193589 *)
    Flatten[Table[v[n], {n, 0, 8}]]
Previous Showing 11-20 of 37 results. Next