cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 223 results. Next

A116504 Number of distinct prime divisors of the concatenation of n,...,1.

Original entry on oeis.org

0, 2, 2, 2, 3, 2, 2, 3, 3, 3, 2, 3, 3, 4, 5, 4, 6, 8, 4, 5, 4, 5, 4, 5, 6, 7, 5, 5, 7, 8, 3, 6, 5, 7, 8, 6, 4, 3, 6, 5, 8, 6, 3, 7, 6, 5, 7, 7, 3, 6, 3, 7, 9, 9, 3, 4, 4, 6, 3, 3, 5, 8, 5, 6, 7, 7, 4, 8, 8, 4, 8, 4, 7, 8, 10, 3, 7, 6, 4, 7, 7, 1, 3, 8, 3, 8, 5, 4, 5, 7, 11, 9, 6
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 20 2006

Keywords

Examples

			87654321 = 3*3*1997*4877, distinct prime divisors are 3, 1997 and 4877, hence a(8) = 3.
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[PrependTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; m = FactorInteger[p]; AppendTo[b, Length[m]], {n, 1, 30}]; b (* Artur Jasinski, Mar 30 2008 *)
    Table[PrimeNu[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]]],{n,95}] (* Harvey P. Dale, Oct 03 2015 *)
  • PARI
    {a="";for(n=1,58,a=concat(n,a);print1(omega(eval(a)),","))}

Extensions

Edited and extended by Klaus Brockhaus, Mar 29 2006
Terms a(59)-a(93) from Sean A. Irvine, Nov 04 2009
a(90) corrected by Sean A. Irvine, Nov 02 2024

A116505 Number of distinct prime divisors of the concatenation of 1..n.

Original entry on oeis.org

0, 2, 2, 2, 3, 3, 2, 4, 3, 3, 6, 4, 3, 3, 3, 3, 4, 5, 6, 6, 8, 6, 4, 5, 4, 6, 5, 5, 4, 7, 3, 5, 6, 2, 7, 5, 4, 4, 6, 8, 5, 7, 4, 4, 9, 7, 5, 7, 6, 9, 3, 3, 4, 9, 5, 4, 6, 4, 4, 6, 3, 7, 4, 9, 6, 8, 3, 7, 7, 6, 5, 5, 3, 9, 5, 4, 5, 6, 6, 7, 4, 7, 6, 3, 5, 7, 6, 5, 9, 8, 6, 6, 7, 5, 6, 5, 2, 9, 5, 9
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 20 2006

Keywords

Comments

Dario Alpern's factorization program was used for n > 43.

Examples

			123456 = 2*2*2*2*2*2*3*643, with distinct prime divisors 2, 3 and 643. Hence, a(6) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[FromDigits[Flatten[IntegerDigits[Range[n]]]]], {n, 30}] (* Jan Mangaldan, Jul 07 2020 *)
  • PARI
    {a="";for(n=1,43,a=concat(a,n);print1(omega(eval(a)),", "))}

Extensions

Edited and extended by Klaus Brockhaus, Mar 29 2006
Terms 59-100 from Sean A. Irvine, Nov 04 2009

A262300 Let S(n,k) denote the number formed by concatenating the decimal numbers 1,2,3,...,k, but omitting n; a(n) is the smallest k for which S(n,k) is prime, or -1 if no term in S(n,*) is prime.

Original entry on oeis.org

2, 3, 7, 9, 11, 7, 11, 1873, 19, 14513, 13, 961
Offset: 1

Views

Author

N. J. A. Sloane and Jerrold B. Tunnell, Sep 27 2015

Keywords

Comments

Sep 28 2015: David Broadhurst has found a(10) = 14513, a(12) = 961, a(14) = 653, a(16) = 5109, a(17) = 493, a(18) = 757, and a(20) = 1313. All these correspond to probable primes.
It is easy to check that a(19)=29.
So the sequence begins 2, 3, 7, 9, 11, 7, 11, 1873, 19, 14513, 13, 961, ???, 653, ???, 5109, 493, 757, 29, 1313, ...
a(13) is either -1 or greater than 40000. - Robert Price, Nov 03 2018

Examples

			a(5) = 11 because the smallest prime in S(5,*) (A262575) is 123467891011.
a(8) = 1873 (corresponding to the 6364-digit probable prime 1234567910111213...1873) was found by David Broadhurst on Sep 27 2015.
a(9) = 19 because the smallest prime in S(9,*) is 1234567810111213141516171819.
a(10) = 14513 (corresponding to the 61457-digit probable prime 123456789111213...14513) was found by David Broadhurst on Sep 28 2015.
		

Crossrefs

Cf. A262299.
See A262571-A262582 for the sequences S(1,*) through S(12,*).
See also A007908 (which plays the role of S(0,*)).
For the primes in S(1,*) and S(2,*) see A089987, A262298.

Programs

  • Mathematica
    A262300[n_] := Module[{k = 1}, While[! PrimeQ[FromDigits[Flatten[Map[IntegerDigits, Complement[Range[k], {n}]]]]], k++]; k];
    Table[A262300[n], {n, 12}]  (* Robert Price, Oct 27 2018 *)
  • PARI
    s(n, k) = my(s=""); for(x=1, k, if(x!=n, s=concat(s, x))); eval(Str(s))
    a(n) = for(k=1, oo, my(s=s(n, k)); if(ispseudoprime(s), return(k))) \\ Felix Fröhlich, Oct 27 2018

Extensions

a(8) was found by David Broadhurst, Sep 27 2015. On Sep 28 2015 David Broadhurst also found a(10), a(12), a(14), a(16), a(17), a(18), and a(20).

A048438 Take the first n numbers written in base 6, concatenate them, then convert from base 6 to base 10.

Original entry on oeis.org

1, 8, 51, 310, 1865, 67146, 2417263, 87021476, 3132773145, 112779833230, 4060073996291, 146162663866488, 5261855899193581, 189426812370968930, 6819365245354881495, 245497148832775733836, 8837897357979926418113, 318164304887277351052086, 11453914975941984637875115
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

The first three primes in this sequence occur for n = 11 (a(11) = 4060073996291), n = 43 (a(43) = 4.3194...*10^68), n = 173 (a(n) = 1.3014...*10^372) (email from Kurt Foster, Oct 24 2015). - N. J. A. Sloane, Oct 25 2015

Examples

			a(8) = (1)(2)(3)(4)(5)(10)(11)(12) = 12345101112_6 = 87021476.
		

Crossrefs

Cf. A014829.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: this sequence, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*6^(1+Ilog(6, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 6]]]; Table[AppendTo[n, IntegerDigits[w, 6]]; n=Flatten[n]; FromDigits[n, 6], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    Table[FromDigits[Flatten[IntegerDigits[#,6]&/@Range[n]],6],{n,20}] (* Harvey P. Dale, Sep 29 2012 *)

A048439 Take the first n numbers written in base 7, concatenate them, then convert from base 7 to base 10.

Original entry on oeis.org

1, 9, 66, 466, 3267, 22875, 1120882, 54923226, 2691238083, 131870666077, 6461662637784, 316621469251428, 15514451993319985, 760208147672679279, 37250199235961284686, 1825259762562102949630, 89437728365543044531887, 4382448689911609182062481
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

The first two primes in this sequence occur for n = 10 (a(10) = 131870666077) and n = 37 (a(37) = 569432644200356239518976257368822195317881440478377541397) (email from Kurt Foster, Oct 24 2015). What is the next prime? - N. J. A. Sloane, Oct 25 2015
After a(37), there are no more primes through a(4000) = 2.2670...*10^14538. - Jon E. Schoenfield, Jan 19 2018

Examples

			a(8): (1)(2)(3)(4)(5)(6)(10)(11) = 1234561011_7 = 54923226.
		

Crossrefs

Cf. A014830.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: this sequence, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*7^(1+Ilog(7, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    a[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 7], 7]; Array[a, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048440 Take the first n numbers written in base 8, concatenate them, then convert from base 8 to base 10.

Original entry on oeis.org

1, 10, 83, 668, 5349, 42798, 342391, 21913032, 1402434057, 89755779658, 5744369898123, 367639673479884, 23528939102712589, 1505852102573605710, 96374534564710765455, 6167970212141488989136, 394750093577055295304721, 25264005988931538899502162
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

83 is the only prime in this sequence among the first 3000 terms (email from Kurt Foster, Oct 24 2015). - N. J. A. Sloane, Oct 25 2015

Examples

			a(9): (1)(2)(3)(4)(5)(6)(7)(10)(11) = 12345671011_8 = 1402434057.
		

Crossrefs

Cf. A014831.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: this sequence, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*8^(1+Ilog(8, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
    
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 8]]]; Table[AppendTo[n, IntegerDigits[w, 8]]; n=Flatten[n]; FromDigits[n, 8], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    Table[FromDigits[Flatten[IntegerDigits[#,8]&/@Range[n]],8],{n,20}] (* Harvey P. Dale, Dec 07 2012 *)
  • Python
    from functools import reduce
    def A048440(n): return reduce(lambda i,j:(i<<3*(1+(j.bit_length()-1)//3))+j,range(n+1)) # Chai Wah Wu, Feb 26 2023

A048441 Take the first n numbers written in base 9, concatenate them, then convert from base 9 to base 10.

Original entry on oeis.org

1, 11, 102, 922, 8303, 74733, 672604, 6053444, 490328973, 39716646823, 3217048392674, 260580919806606, 21107054504335099, 1709671414851143033, 138483384602942585688, 11217154152838349440744, 908589486379906304700281, 73595748396772410680722779
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

The first two primes in this sequence occur for n = 2 (a(2) = 11) and n = 14 (a(14) = 1709671414851143033) (email from Kurt Foster, Oct 24 2015). - N. J. A. Sloane, Oct 25 2015

Examples

			a(9) = (1)(2)(3)(4)(5)(6)(7)(8)(10) = 1234567810_9 = 490328973.
		

Crossrefs

Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: this sequence, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*9^(1+Ilog(9, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 9]]]; Table[AppendTo[n, IntegerDigits[w, 9]]; n=Flatten[n]; FromDigits[n, 9], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 9], 9]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)
  • PARI
    { cuo=0;
    for(ixp=1, 18,
    casi = ixp; cvst=0;
    while(casi != 0,
    cvd = casi%9; cvst=10*cvst + cvd + 1; casi = (casi - cvd) / 9 );
    while(cvst !=0, ptch = cvst%10;
    cuo=cuo*9+ptch-1; cvst = (cvst - ptch) / 10 ); print1(cuo, ", "))}
    \\ Douglas Latimer, Apr 27 2012
    

Extensions

More terms from Douglas Latimer, May 10 2012

A048442 Take the first n numbers written in base 11, concatenate them, then convert from base 11 to base 10.

Original entry on oeis.org

1, 13, 146, 1610, 17715, 194871, 2143588, 23579476, 259374245, 2853116705, 345227121316, 41772481679248, 5054470283189021, 611590904265871555, 74002499416170458170, 8954302429356625438586, 1083470593952151678068923, 131099941868210353046339701
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(11) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(10) = 123456789A10_11 = 345227121316.
		

Crossrefs

Cf. A014881.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: this sequence, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1) * 11^(1+Ilog(11, n)) + n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 11]]]; Table[AppendTo[n, IntegerDigits[w, 11]]; n=Flatten[n]; FromDigits[n, 11], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 11], 11]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)
  • PARI
    { cuo=0;
    for(ixp=1, 18, casi = ixp; cvst=0;
    while(casi != 0,
    cvd = casi%11; cvst=100*cvst + cvd + 1; casi = (casi - cvd) / 11 );
    while(cvst !=0, ptch = cvst%100;
    cuo=cuo*11+ptch-1; cvst = (cvst - ptch) / 100 ); print1(cuo, ", "))}
    \\ Douglas Latimer, May 09 2012
    

Extensions

1 more term from Douglas Latimer, May 10 2012

A048443 Take the first n numbers written in base 12, concatenate them, then convert from base 12 to base 10.

Original entry on oeis.org

1, 14, 171, 2056, 24677, 296130, 3553567, 42642812, 511713753, 6140565046, 73686780563, 10610896401084, 1527969081756109, 220027547772879710, 31683966879294678255, 4562491230618433668736, 656998737209054448298001, 94607818158103840554912162
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(12) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(10) = 123456789AB10_12 = 10610896401084.
		

Crossrefs

Cf. A014882.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: this sequence, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*12^(1+Ilog(12, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 12]]]; Table[AppendTo[n, IntegerDigits[w, 12]]; n=Flatten[n]; FromDigits[n, 12], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 12], 12]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048444 Take the first n numbers written in base 13, concatenate them, then convert from base 13 to base 10.

Original entry on oeis.org

1, 15, 198, 2578, 33519, 435753, 5664796, 73642356, 957350637, 12445558291, 161792257794, 2103299351334, 355457590375459, 60072332773452585, 10152224238713486880, 1715725896342579282736, 289957676481895898782401, 49002847325440406894225787
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

No primes in the first 31000 terms. - Giovanni Resta, Jun 08 2018

Examples

			a(12) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(C) = 123456789ABC_13 = 2103299351334.
		

Crossrefs

Cf. A014896.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: this sequence, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*13^(1+Ilog(13, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 13]]]; Table[AppendTo[n, IntegerDigits[w, 13]]; n=Flatten[n]; FromDigits[n, 13], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 13], 13]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)
Previous Showing 41-50 of 223 results. Next