cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A385349 Product of odd proper divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 3, 1, 7, 15, 1, 1, 27, 1, 5, 21, 11, 1, 3, 5, 13, 27, 7, 1, 225, 1, 1, 33, 17, 35, 27, 1, 19, 39, 5, 1, 441, 1, 11, 2025, 23, 1, 3, 7, 125, 51, 13, 1, 729, 55, 7, 57, 29, 1, 225, 1, 31, 3969, 1, 65, 1089, 1, 17, 69, 1225, 1, 27, 1, 37, 5625
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 26 2025

Keywords

Crossrefs

Cf. A007955, A007956, A091570 (similar for sum), A136655, A385350 (fixed points).

Programs

  • Maple
    a:= n-> mul(`if`(d::odd, d, 1), d=numtheory[divisors](n) minus {n}):
    seq(a(n), n=1..75);  # Alois P. Heinz, Jun 27 2025
  • Mathematica
    a[n_] := Times @@ Select[Divisors[n], # < n && OddQ[#] &]; Table[a[n], {n, 75}]
  • PARI
    a(n) = my(m = n >> valuation(n,2), d = numdiv(m)); if(d % 2, sqrtint(m)^d, m^(d/2)) / if(m < n, 1, n); \\ Amiram Eldar, Jun 27 2025
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A385349(n):
        d = divisor_count(m:=n>>(~n&n-1).bit_length())
        k = isqrt(m)**d if d&1 else m**(d>>1)
        return k//n if n&1 else k # Chai Wah Wu, Jun 27 2025

Formula

a(n) = Product_{d|n, d < n, d odd} d.

A089748 Numbers k that divide (sum of proper divisors of k + product of proper divisors of k).

Original entry on oeis.org

2, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240
Offset: 1

Views

Author

Joseph L. Pe, Jan 08 2004

Keywords

Comments

All perfect numbers belong to this sequence.
Every term of A007691 is in this sequence. - T. D. Noe, Sep 29 2005
There are two sets of candidates of k: (i) k|A001065(k) and k|A007956(k) individually, or (ii) neither k|A001065(k) nor k|A007956(k) but the remainders of A001065(k)/k and A007956(k)/k sum up to k. If k has at least 4 divisors, the product of the second and penultimate divisor (in the sorted divisors list) is k, so k|A007956(k). This means for all k in A080257 we have k|A007956(k), and the k that do not divide A007956(k) are in A000430, which means k=p or k=p^2 for some prime p. If k=p, A001065(k)+A007956(k) = 1+1 =2, and the requirement here reduces to k|2 and only k=2 is left. If k=p^2, A001065(k) +A007956(k) = 1+p+p = 1+2*p, and the requirement here reduces to p^2 | (1+2*p), which has no solutions. This means case (ii) does not generate any solutions besides k=2. And this means all other solutions are from case (i), and therefore elements A007691 > 1 are the only remaining candidates. - R. J. Mathar, Oct 15 2021

Crossrefs

Cf. A001065, A007956, A007691, A080257 (k which divide A007691(k)).
Cf. A219544.

Programs

  • Maple
    isA087948 := proc(n)
        if modp( A001065(n)+A007956(n),n) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    for n from 2 do
        if isA087948(n) then
            printf("%d\n",n) ;
        end if;
    end do: # R. J. Mathar, Oct 15 2021
  • Mathematica
    l = {}; Do[d = Drop[Divisors[n], -1]; p = Apply[Plus, d]; t = Apply[Times, d]; m = Mod[p + t, n]; If[m == 0, l = Append[l, n]], {n, 2, 10^6}]; l
    Select[Range[2,22*10^5],Mod[Total[Most[Divisors[#]]]+Times@@Most[Divisors[#]],#]==0&] (* The program generates the first 11 terms of the sequence. *) (* Harvey P. Dale, Jun 05 2024 *)
  • Python
    from math import prod
    from sympy import divisors
    def ok(n): d = divisors(n)[:-1]; return n > 1 and (sum(d) + prod(d))%n == 0
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Oct 15 2021

Extensions

a(11)-a(16) from Michael S. Branicky, Oct 16 2021

A188902 Numerator of the base n logarithm of the product of the divisors of n.

Original entry on oeis.org

1, 1, 3, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 2, 5, 1, 3, 1, 3, 2, 2, 1, 4, 3, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 9, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 3, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 7, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2
Offset: 2

Views

Author

Alonso del Arte, Apr 19 2011

Keywords

Comments

Obviously the product of divisors of n (see A007955) is a multiple of n. But often it is also a perfect power of n, a number of the form n^m with m an integer. But if n is a perfect square (A000290), then the logarithm is a rational number but not an integer.
a(1) is of course indeterminate since it can be any value desired, whether real, imaginary or complex.
The denominator is A010052(n) + 1.

Crossrefs

Programs

  • Mathematica
    Numerator[Table[FullSimplify[Log[n, Times@@Divisors[n]]], {n, 2, 75}]]
  • PARI
    A188902(n) = numerator(numdiv(n)/2); \\ Antti Karttunen, May 27 2017
    
  • Python
    from sympy import divisor_count, Integer
    def a(n): return (divisor_count(n) / 2).numerator
    print([a(n) for n in range(2, 51)])  # Indranil Ghosh, May 27 2017

Formula

a(n) = numerator(A000005(n)/2).
a(n) = (A038548(n) + A056924(n)) / 2 for n > 1.

A191905 Composite deficient numbers k such that (product of proper divisors of k) mod (sum of proper divisors of k) is a prime number.

Original entry on oeis.org

4, 9, 10, 25, 33, 39, 49, 57, 91, 93, 98, 105, 111, 119, 121, 145, 155, 169, 183, 185, 187, 189, 201, 205, 209, 215, 225, 235, 237, 242, 245, 265, 289, 291, 299, 305, 327, 335, 351, 355, 361, 371, 403, 413, 415, 417, 425, 427, 437, 469, 471, 475, 485, 493, 497, 515, 527, 529, 535, 543, 549, 553
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 19 2011

Keywords

Crossrefs

Programs

  • Maple
    isA191905 := proc(n) if not isA125493(n) then false; else isprime( A191906(n)) ; end if; end proc:
    for n from 3 to 710 do if isA191905(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jun 27 2011
  • Mathematica
    fQ[n_]:=Module[{pd=Most[Divisors[n]]},!PerfectNumberQ[n]&&CompositeQ[n] && DivisorSigma[ 1,n]<2n&& PrimeQ[Mod[Times@@pd,Total[pd]]]] Select[Range[2,600],fQ] (* Harvey P. Dale, Jul 14 2024 *)

Extensions

Corrected by R. J. Mathar, Jun 27 2011

A192034 Least k such that (product of proper divisors of k) mod (sum of proper divisors of k) equals n.

Original entry on oeis.org

2, 8, 4, 9, 14, 25, 15, 49, 22, 18, 21, 57, 45, 169, 34, 69, 38, 205, 143, 119, 46, 87, 217, 93, 130, 133, 58, 323, 62, 111, 160, 553, 319, 63, 74, 129, 30, 305, 82, 75, 86, 36, 68, 335, 48, 159, 301, 355, 369, 171, 106, 177
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jun 21 2011

Keywords

Comments

Greedy inverse of A191906.

Examples

			a(0)=2 because A007956(2) mod A001065(2) = 1 mod 1 = 0, and 2 is the smallest number for which this is the case;
a(1)=8 because A007956(8) mod A001065(8) = 8 mod 7 = 1, and 8 is the smallest number for which this is the case;
a(2)=4 because A007956(4) mod A001065(4) = 2 mod 3 = 2, and 4 is the smallest number for which this is the case.
		

Crossrefs

Programs

  • Maple
    A192034 := proc(n) local k ; for k from 2 do if A191906(k) = n then return k ; end if; end do: end proc: # R. J. Mathar, Jul 01 2011
  • Mathematica
    ds[n_]:=Module[{divs=Most[Divisors[n]]},Mod[Times@@divs,Total[divs]]]; Join[ {2},Transpose[Table[SelectFirst[Table[{n,ds[n]},{n,2,2000}],#[[2]] == i&],{i,60}]][[1]]] (* Harvey P. Dale, Apr 11 2015 *)

Extensions

Corrected by R. J. Mathar, Jul 01 2011
Example section corrected by Jon E. Schoenfield, Feb 24 2019

A192035 Numbers k with equal remainders of (product of divisors of k) mod (sum of divisors of k) and (product of proper divisors of k) mod (sum of proper divisors of k).

Original entry on oeis.org

6, 14, 28, 51, 120, 260, 270, 496, 672, 679, 752, 924, 1260, 1320, 1540, 1960, 2055, 2262, 2651, 3808, 3948, 4381, 6413, 6435, 6944, 7900, 7980, 8010, 8128, 9809, 9945, 10242, 10920, 12690, 15456, 16830, 18018, 21728, 21970, 22320, 25296, 27930, 29190, 29792
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 21 2011

Keywords

Comments

The even perfect numbers (A000396) are a subsequence.
The deficient numbers (A005100) in the sequence are 14, 51, 679, 752, 2055, 2651, 4381, 6413, 9809, 9945, 21970, ... - Juri-Stepan Gerasimov, Jul 07 2011

Examples

			14 is in this sequence because (1*2*7*14) mod (1+2+7+14) = 196 mod 24 = 4 and (1*2*7) mod (1+2+7) = 14 mod 10 = 4.
		

Crossrefs

Programs

  • Mathematica
    erQ[n_]:=Module[{divs=Divisors[n],ds=DivisorSigma[1,n]},Mod[ Times@@ divs,ds] == Mod[ Times@@Most[divs],ds-n]]; Select[Range[2,30000],erQ] (* Harvey P. Dale, Jun 13 2015 *)
    Select[Range[2, 30000], Mod[(p = #^(DivisorSigma[0, #]/2)), (s = DivisorSigma[1, #])] == Mod[p/#, s - #] &] (* Amiram Eldar, Jul 21 2019 *)

Formula

{ k : A187680(k) = A191906(k) }.

Extensions

Values from a(4) onwards from R. J. Mathar, Jul 05 2011

A277169 Product of squares of proper divisors of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 36, 1, 64, 9, 100, 1, 20736, 1, 196, 225, 4096, 1, 104976, 1, 160000, 441, 484, 1, 191102976, 25, 676, 729, 614656, 1, 729000000, 1, 1048576, 1089, 1156, 1225, 78364164096, 1, 1444, 1521, 4096000000, 1, 5489031744, 1, 3748096, 4100625, 2116, 1, 28179280429056, 49, 6250000
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 19 2016

Keywords

Examples

			a(6) = 36 because 6 has 3 proper divisors {1,2,3} and 1^2*2^2*3^2 = 36.
		

Crossrefs

Programs

  • Maple
    seq(n^(numtheory:-tau(n)-2), n=1..50); # Robert Israel, Nov 13 2016
  • Mathematica
    Table[n^(DivisorSigma[0, n] - 2), {n, 1, 50}]

Formula

a(n) = n^(sigma_0(n)-2).
a(n) = n^A000005(n)/A000290(n).
a(n) = A000290(A007956(n))/A000290(n).
a(n) = A000290(A007955(n)/n)/A000290(n).
a(n) = A062758(n)/A000290(n).
a(n) = 1 if n is prime or n = 1 (A008578).
a(n) = n if n is square of prime (A001248).
a(n) = n^2 if n is multiplicatively perfect number (A007422).

A290479 Product of nonprime squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 6, 1, 14, 15, 1, 1, 6, 1, 10, 21, 22, 1, 6, 1, 26, 1, 14, 1, 27000, 1, 1, 33, 34, 35, 6, 1, 38, 39, 10, 1, 74088, 1, 22, 15, 46, 1, 6, 1, 10, 51, 26, 1, 6, 55, 14, 57, 58, 1, 27000, 1, 62, 21, 1, 65, 287496, 1, 34, 69, 343000, 1, 6, 1, 74, 15, 38, 77, 474552, 1, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 03 2017

Keywords

Examples

			a(30) = 27000 because 30 has 8 divisors {1, 2, 3, 5, 6, 10, 15, 30} among which 5 are nonprime squarefree {1, 6, 10, 15, 30} and 1*6*10*15*30 = 27000.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[d, {d, Select[Divisors[n], !PrimeQ[#] && SquareFreeQ[#] &]}], {n, 80}]
    Table[Last[Select[Divisors[n], SquareFreeQ]]^(DivisorSigma[0, Last[Select[Divisors[n], SquareFreeQ]]]/2 - 1), {n, 80}]
  • PARI
    A290479(n) = if(1==n, n, my(r=factorback(factorint(n)[, 1])); (r^((numdiv(r)/2)-1))); \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = A078599(n)/A007947(n).
a(n) = rad(n)^(d(rad(n))/2-1), where d() is the number of divisors of n (A000005) and rad() is the squarefree kernel of n (A007947).
a(n) = 1 if n is a prime power.

A324505 a(n) = numerator of Sum_{d|n} (d/pod(d)) where pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 2, 5, 2, 19, 2, 21, 7, 31, 2, 529, 2, 43, 46, 169, 2, 1135, 2, 1441, 64, 67, 2, 52513, 11, 79, 64, 2801, 2, 117001, 2, 2705, 100, 103, 106, 1122553, 2, 115, 118, 238561, 2, 317521, 2, 6865, 6886, 139, 2, 20247937, 15, 8251, 154, 9569, 2, 557443, 166
Offset: 1

Views

Author

Jaroslav Krizek, Mar 03 2019

Keywords

Comments

Sum_{d|n} (d/pod(d)) >= 1 for all n >= 1.
Sum_{d|n} (d/pod(d)) = 2 iff n = primes (A000040).

Examples

			Sum_{d|n} (d/pod(d)) for n >= 1: 1, 2, 2, 5/2, 2, 19/6, 2, 21/8, 7/3, 31/10, 2, 529/144, 2, 43/14, 46/15, 169/64, ...
For n=4; Sum_{d|4} (d/pod(d)) = 1/pod(1) + 2/pod(2) + 4/pod(4) = 1/1 + 2/2 + 4/8 = 5/2; a(4) = 5.
		

Crossrefs

Cf. A000040, A007955, A007956 (denominators).

Programs

  • Magma
    [Numerator(&+[d / &*[c: c in Divisors(d)]: d in Divisors(n)]): n in [1..100]];
    
  • Mathematica
    Table[Numerator[Sum[k/Product[j, {j, Divisors[k]}], {k, Divisors[n]}]], {n, 1, 60}] (* G. C. Greubel, Mar 04 2019 *)
  • PARI
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2));
    A324505(n) = numerator(sumdiv(n,d,(d/A007955(d)))); \\ Antti Karttunen, Jan 27 2025
  • Sage
    [sum(k/product(j for j in k.divisors()) for k in n.divisors()).numerator() for n in (1..60)] # G. C. Greubel, Mar 04 2019
    

Formula

a(p) = 2 for p = primes.

A338576 a(n) = n * pod(n) where pod(n) = the product of divisors of n (A007955).

Original entry on oeis.org

1, 4, 9, 32, 25, 216, 49, 512, 243, 1000, 121, 20736, 169, 2744, 3375, 16384, 289, 104976, 361, 160000, 9261, 10648, 529, 7962624, 3125, 17576, 19683, 614656, 841, 24300000, 961, 1048576, 35937, 39304, 42875, 362797056, 1369, 54872, 59319, 102400000, 1681
Offset: 1

Views

Author

Jaroslav Krizek, Nov 03 2020

Keywords

Examples

			a(6) = 6 * pod(6) = 6 * 36 = 216.
		

Crossrefs

Cf. A007955 (pod(n)), A007956 (pod(n) / n).
Similar sequences: A038040 (n * tau(n)), A064987 (n * sigma(n)).
Cf. A174935 (partial sums of a(n)).

Programs

  • Magma
    [n * &*Divisors(n): n in [1..100]]
    
  • Mathematica
    a[n_] := n^(1 + DivisorSigma[0, n]/2); Array[a, 50] (* Amiram Eldar, Nov 03 2020 *)
  • PARI
    a(n) = n*vecprod(divisors(n)); \\ Michel Marcus, Nov 03 2020
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A338576(n): return (isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2+1) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = n * A007955(n) = n^2 * A007956(n).
a(n) = lcm(n, pod(n)) * gcd(n, pod(n)).
a(p) = p^2 for p = primes (A000040).
Previous Showing 31-40 of 44 results. Next