cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 185 results. Next

A032153 Number of ways to partition n elements into pie slices of different sizes.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 19, 22, 32, 41, 57, 92, 114, 155, 209, 280, 364, 587, 707, 984, 1280, 1737, 2213, 2990, 4390, 5491, 7361, 9650, 12708, 16451, 21567, 27506, 40100, 49201, 65701, 84128, 111278, 140595, 184661, 232356, 300680
Offset: 0

Views

Author

Keywords

Comments

Number of strict necklace compositions of n. A strict necklace composition of n is a finite sequence of distinct positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. In other words, it is a strict composition of n starting with its least part. - Gus Wiseman, May 31 2019

Examples

			From _Gus Wiseman_, May 31 2019: (Start)
Inequivalent representatives of the a(1) = 1 through a(9) = 11 ways to slice a pie:
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)
            (12)  (13)  (14)  (15)   (16)   (17)   (18)
                        (23)  (24)   (25)   (26)   (27)
                              (123)  (34)   (35)   (36)
                              (132)  (124)  (125)  (45)
                                     (142)  (134)  (126)
                                            (143)  (135)
                                            (152)  (153)
                                                   (162)
                                                   (234)
                                                   (243)
(End)
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    K:= floor(isqrt(1+8*N)/2):
    S:= series(1+add((k-1)!*x^((k^2+k)/2)/mul(1-x^j,j=1..k),k=1..K),x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jul 15 2016
    # second Maple program:
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 `if`(n=0, 1, b(n$2, -1)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 12 2020
  • Mathematica
    max=50; s=Sum[(x^(k(k+1)/2-1)*(k-1)!)/QPochhammer[x, x, k], {k, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Jan 19 2016 *)
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],neckQ]],{n,30}] (* Gus Wiseman, May 31 2019 *)
  • PARI
    N=66;  q='q+O('q^N);
    gf=sum(n=1,N, (n-1)!*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    Vec(gf)
    /* Joerg Arndt, Oct 20 2012 */
    
  • PARI
    seq(n)=[subst(serlaplace(p/y),y,1) | p <- Vec(y-1+prod(k=1, n, 1 + x^k*y + O(x*x^n)))] \\ Andrew Howroyd, Sep 13 2018

Formula

"CGK" (necklace, element, unlabeled) transform of 1, 1, 1, 1, ...
G.f.: Sum_{k >= 1} (k-1)! * x^((k^2+k)/2) / (Product_{j=1..k} 1-x^j). - Vladeta Jovovic, Sep 21 2004
a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} (k-1)! * A008289(n,k) for n > 0. - Alois P. Heinz, Aug 07 2020

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 13 2018

A359895 Number of odd-length integer partitions of n whose parts have the same mean as median.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 2, 1, 5, 5, 2, 5, 2, 8, 18, 1, 2, 19, 2, 24, 41, 20, 2, 9, 44, 31, 94, 102, 2, 125, 2, 1, 206, 68, 365, 382, 2, 98, 433, 155, 2, 716, 2, 1162, 2332, 196, 2, 17, 1108, 563, 1665, 3287, 2, 3906, 5474, 2005, 3083, 509, 2, 9029
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Comments

The length and median of such a partition are integers with product n.

Examples

			The a(1) = 1 through a(9) = 5 partitions:
  (1)  (2)  (3)    (4)  (5)      (6)    (7)        (8)  (9)
            (111)       (11111)  (222)  (1111111)       (333)
                                 (321)                  (432)
                                                        (531)
                                                        (111111111)
The a(15) = 18 partitions:
  (15)
  (5,5,5)
  (6,5,4)
  (7,5,3)
  (8,5,2)
  (9,5,1)
  (3,3,3,3,3)
  (4,3,3,3,2)
  (4,4,3,2,2)
  (4,4,3,3,1)
  (5,3,3,2,2)
  (5,3,3,3,1)
  (5,4,3,2,1)
  (5,5,3,1,1)
  (6,3,3,2,1)
  (6,4,3,1,1)
  (7,3,3,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

This is the odd-length case of A240219, complement A359894, strict A359897.
These partitions are ranked by A359891, complement A359892.
The complement is counted by A359896.
The strict case is A359899, complement A359900.
The version for factorizations is A359910.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,0,30}]
  • PARI
    \\ P(n, k, m) is g.f. for k parts of max size m.
    P(n, k, m)={polcoef(1/prod(i=1, m, 1 - y*x^i + O(x*x^n)), k, y)}
    a(n)={if(n==0, 0, sumdiv(n, d, if(d%2, my(m=n/d, h=d\2, r=n-m*(h+1)+h); polcoef(P(r, h, m)*P(r, h, r), r))))} \\ Andrew Howroyd, Jan 21 2023

Formula

a(p) = 2 for prime p. - Andrew Howroyd, Jan 21 2023

A363720 Number of integer partitions of n with different mean, median, and mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 7, 16, 17, 34, 38, 50, 79, 115, 123, 198, 220, 291, 399, 536, 605, 815, 1036, 1241, 1520, 2059, 2315, 3132, 3708, 4491, 5668, 6587, 7788, 10259, 12299, 14515, 17153, 21558, 24623, 30876, 35540, 41476, 52023, 61931, 70811, 85545
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2023

Keywords

Comments

If there are multiple modes, then the mode is automatically considered different from the mean and median; otherwise, we take the unique mode.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(7) = 2 through a(11) = 16 partitions:
  (421)   (431)   (621)    (532)     (542)
  (3211)  (521)   (3321)   (541)     (632)
          (4211)  (4311)   (631)     (641)
                  (5211)   (721)     (731)
                  (32211)  (5311)    (821)
                           (6211)    (4322)
                           (322111)  (4421)
                                     (5321)
                                     (5411)
                                     (6311)
                                     (7211)
                                     (33221)
                                     (43211)
                                     (52211)
                                     (332111)
                                     (422111)
		

Crossrefs

For equal instead of unequal: A363719, ranks A363727, odd-length A363721.
The case of a unique mode is A363725.
These partitions have ranks A363730.
For factorizations we have A363742, for equal A363741, see A359909, A359910.
Just two statistics:
- (mean) = (median) gives A240219, also A359889, A359895, A359897, A359899.
- (mean) != (median) gives A359894, also A359890, A359896, A359898, A359900.
- (mean) = (mode) gives A363723, see A363724, A363731.
- (median) = (mode) gives A363740.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or negative mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],{Mean[#]}!={Median[#]}!=modes[#]&]],{n,0,30}]

A363731 Number of integer partitions of n whose mean is a mode but not the only mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 5, 0, 1, 8, 5, 0, 12, 0, 19, 14, 2, 0, 52, 21, 3, 23, 59, 0, 122, 0, 97, 46, 6, 167, 303, 0, 8, 82, 559, 0, 543, 0, 355, 745, 15, 0, 1685, 510, 1083, 251, 840, 0, 2325, 1832, 3692, 426, 34, 0, 9599
Offset: 0

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(n) partitions for n = 6, 9, 12, 15, 18:
  (3,2,1)  (4,3,2)  (5,4,3)        (6,5,4)      (7,6,5)
           (5,3,1)  (6,4,2)        (7,5,3)      (8,6,4)
                    (7,4,1)        (8,5,2)      (9,6,3)
                    (6,3,2,1)      (9,5,1)      (10,6,2)
                    (3,3,2,2,1,1)  (4,4,3,3,1)  (11,6,1)
                                   (5,3,3,2,2)  (4,4,3,3,2,2)
                                   (5,4,3,2,1)  (5,5,3,3,1,1)
                                   (7,3,3,1,1)  (6,4,3,3,1,1)
                                                (7,3,3,2,2,1)
                                                (8,3,3,2,1,1)
                                                (3,3,3,2,2,2,1,1,1)
                                                (6,2,2,2,2,1,1,1,1)
		

Crossrefs

For a unique mode we have A363723, non-constant A362562.
For any number of modes we have A363724.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A237984 counts partitions containing their mean, ranks A327473.
A327472 counts partitions not containing their mean, ranks A327476.
A362608 counts partitions with a unique mode, ranks A356862.
A363719 counts partitions with all three averages equal, ranks A363727.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],MemberQ[modes[#],Mean[#]]&&!{Mean[#]}==modes[#]&]],{n,30}]

A364533 Number of strict integer partitions of n containing the sum of no pair of distinct parts. A variation of sum-free strict partitions.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 15, 21, 22, 28, 32, 38, 40, 51, 55, 65, 74, 83, 94, 111, 119, 136, 160, 174, 196, 222, 252, 273, 315, 341, 391, 425, 477, 518, 602, 636, 719, 782, 886, 944, 1073, 1140, 1302, 1380, 1553, 1651, 1888, 1995, 2224, 2370
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2023

Keywords

Examples

			The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12):
  1   2   3    4    5    6    7     8     9     A     B     C
          21   31   32   42   43    53    54    64    65    75
                    41   51   52    62    63    73    74    84
                              61    71    72    82    83    93
                              421   521   81    91    92    A2
                                          432   631   A1    B1
                                          531   721   542   543
                                          621         632   732
                                                      641   741
                                                      731   831
                                                      821   921
		

Crossrefs

For subsets of {1..n} we have A085489, complement A088809.
The non-strict version is A236912, complement A237113, ranked by A364461.
Allowing re-used parts gives A364346.
The non-binary version is A364349, non-strict A237667 (complement A237668).
The linear combination-free version is A364350.
The complement in strict partitions is A364670, w/ re-used parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972.
A151897 counts sum-free subsets, complement A364534.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2}]] == {}&]],{n,0,30}]

A365311 Number of strict integer partitions with sum <= n that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 11, 12, 20, 24, 35, 38, 63, 63, 92, 112, 148, 160, 230, 244, 339, 383, 478, 533, 726, 781, 978, 1123, 1394, 1526, 1960, 2112, 2630, 2945, 3518, 3964, 4856, 5261, 6307, 7099, 8464, 9258, 11140, 12155, 14419, 16093, 18589, 20565, 24342, 26597, 30948
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The strict partition (6,3) cannot be linearly combined to obtain 10, so is not counted under a(10).
The strict partition (4,2) has 6 = 1*4 + 1*2 so is counted under a(6), but (4,2) cannot be linearly combined to obtain 7 so is not counted under a(7).
The a(1) = 1 through a(7) = 12 strict partitions:
  (1)  (1)  (1)    (1)    (1)    (1)      (1)
       (2)  (3)    (2)    (5)    (2)      (7)
            (2,1)  (4)    (2,1)  (3)      (2,1)
                   (2,1)  (3,1)  (6)      (3,1)
                   (3,1)  (3,2)  (2,1)    (3,2)
                          (4,1)  (3,1)    (4,1)
                                 (3,2)    (4,3)
                                 (4,1)    (5,1)
                                 (4,2)    (5,2)
                                 (5,1)    (6,1)
                                 (3,2,1)  (3,2,1)
                                          (4,2,1)
		

Crossrefs

For positive coefficients we have A088314.
The positive complement is counted by A088528.
The version for subsets is A365073.
The complement is counted by A365312.
For non-strict partitions we have A365379.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Select[Join@@Array[IntegerPartitions,n],UnsameQ@@#&],combs[n,#]!={}&]],{n,10}]
  • Python
    from math import isqrt
    from sympy.utilities.iterables import partitions
    def A365311(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n+1) for b in partitions(m,m=isqrt(1+(n<<3))>>1) if max(b.values()) == 1 and any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(26)-a(50) from Chai Wah Wu, Sep 13 2023

A001524 Number of stacks, or arrangements of n pennies in contiguous rows, each touching 2 in row below.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 12, 18, 26, 38, 53, 75, 103, 142, 192, 260, 346, 461, 607, 797, 1038, 1348, 1738, 2234, 2856, 3638, 4614, 5832, 7342, 9214, 11525, 14369, 17863, 22142, 27371, 33744, 41498, 50903, 62299, 76066, 92676, 112666, 136696, 165507, 200018
Offset: 0

Views

Author

Keywords

Comments

Also n-stacks with strictly receding left wall.
Weakly unimodal compositions such that each up-step is by at most 1 (and first part 1). By dropping the requirement for weak unimodality one obtains A005169. - Joerg Arndt, Dec 09 2012
The values of a(19) and a(20) in Auluck's table on page 686 are wrong (they have been corrected here). - David W. Wilson, Mar 07 2015
Also the number of overpartitions of n having more overlined parts than non-overlined parts. For example, a(5) = 5 counts the overpartitions [5'], [4',1'], [3',2'], [3',1',1] and [2',2,1']. - Jeremy Lovejoy, Jan 15 2021

Examples

			For a(6)=8 we have the following stacks:
..x
.xx .xx. ..xx .x... ..x.. ...x. ....x
xxx xxxx xxxx xxxxx xxxxx xxxxx xxxxx xxxxxx
From _Franklin T. Adams-Watters_, Jan 18 2007: (Start)
For a(7) = 12 we have the following stacks:
..x. ...x
.xx. ..xx .xxx .xx.. ..xx. ...xx
xxxx xxxx xxxx xxxxx xxxxx xxxxx
and
.x.... ..x... ...x.. ....x. .....x
xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxxx
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A259095.

Programs

  • Maple
    s := 1+sum(z^(n*(n+1)/2)/((1-z^(n))*product((1-z^i), i=1..n-1)^2), n=1..50): s2 := series(s, z, 300): for j from 1 to 100 do printf(`%d,`,coeff(s2, z, j)) od: # James Sellers, Feb 27 2001
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i>n, 0, `if`(
          irem(n, i)=0, 1, 0)+add(j*b(n-i*j, i+1), j=1..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 03 2018
  • Mathematica
    m = 45; CoefficientList[ Series[Sum[ z^(n*(n+1)/2)/((1-z^(n))*Product[(1-z^i), {i, 1, n-1}]^2), {n, 1, m}], {z, 0, m}], z] // Prepend[Rest[#], 1] &
    (* Jean-François Alcover, May 19 2011, after Maple prog. *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=0,(sqrt(8*n + 1) - 1) / 2, x^((k^2 + k) / 2) / prod( i=1, k, (1 - x^i + x * O(x^n))^((iMichael Somos, Apr 27 2003 */

Formula

G.f.: sum(n>=1, q^(n*(n+1)/2) / prod(k=1..n-1, 1-q^k)^2 / (1-q^n) ). [Joerg Arndt, Jun 28 2013]
a(n) = sum_{m>0,k>0,2*k^2+k+2*m<=n-1} A008289(m,k)*A000041(n-k*(1+2k)-2*m-1). - [Auluck eq 29]
From Vaclav Kotesovec, Mar 03 2020: (Start)
Pi * sqrt(2/3) <= n^(-1/2)*log(a(n)) <= Pi * sqrt(5/6). [Auluck, 1951]
log(a(n)) ~ 2*Pi*sqrt(n/5). [Wright, 1971]
a(n) ~ exp(2*Pi*sqrt(n/5)) / (sqrt(2) * 5^(3/4) * (1 + sqrt(5)) * n). (End)
a(n) = A143184(n) - A340659(n). - Vaclav Kotesovec, Jun 06 2021

Extensions

Corrected by R. K. Guy, Apr 08 1988
More terms from James Sellers, Feb 27 2001

A231147 Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) = (x^n - 1)/(x - 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 5, 4, 9, 4, 5, 1, 1, 1, 1, 6, 5, 14, 9, 14, 5, 6, 1, 1, 1, 1, 7, 6, 20, 14, 29, 14, 20, 6, 7, 1, 1, 1, 1, 8, 7, 27, 20, 49, 29, 49, 20, 27, 7, 8, 1, 1, 1, 1, 9, 8, 35, 27, 76, 49, 99, 49, 76, 27, 35, 8, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 05 2013

Keywords

Comments

From Gus Wiseman, Mar 19 2023: (Start)
Also appears to be the number of nonempty subsets of {1,...,n} with median k, where k ranges from 1 to n in steps of 1/2, and the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). For example, row n = 5 counts the following subsets:
{1} {1,2} {2} {1,4} {3} {2,5} {4} {4,5} {5}
{1,3} {2,3} {1,5} {3,4} {3,5}
{1,2,3} {1,2,3,4} {2,4} {1,3,4,5} {1,4,5}
{1,2,4} {1,2,3,5} {1,3,4} {2,3,4,5} {2,4,5}
{1,2,5} {1,3,5} {3,4,5}
{2,3,4}
{2,3,5}
{1,2,4,5}
{1,2,3,4,5}
Central diagonals T(n,(n+1)/2) appear to be A100066 (bisection A006134).
For mean instead of median we have A327481.
For partitions instead of subsets we have A359893, full steps A359901.
Central diagonals T(n,n/2) are A361801 (bisection A079309).
(End)

Examples

			Triangle begins:
  1
  1  1  1
  1  1  3  1  1
  1  1  4  3  4  1  1
  1  1  5  4  9  4  5  1  1
  1  1  6  5 14  9 14  5  6  1  1
  1  1  7  6 20 14 29 14 20  6  7  1  1
  1  1  8  7 27 20 49 29 49 20 27  7  8  1  1
  1  1  9  8 35 27 76 49 99 49 76 27 35  8  9  1  1
First 3 polynomials: 1, 1 + x + x^2, 1 + x + 3*x^2 + x^3 + x^4
		

Crossrefs

Cf. A231148.
Row sums are 2^n-1 = A000225(n).
Row lengths are 2n-1 = A005408(n-1).
Removing every other column appears to give A013580.

Programs

  • Mathematica
    z = 60; p[n_, x_] := p[x] = (x^n - 1)/(x - 1); Table[p[n, x], {n, 1, z/4}]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> x + 1/x]]; Table[Expand[f1[n, x]], {n, 0, z/4}]
    Flatten[Table[CoefficientList[f1[n, x], x], {n, 1, z/4}]]
  • PARI
    A231147_row(n) = {Vecrev(Vec(numerator((-1+(x+(1/x))^n)/(x+(1/x)-1))))} \\ John Tyler Rascoe, Sep 10 2024

A384880 Number of strict integer partitions of n with all distinct lengths of maximal anti-runs (decreasing by more than 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 10, 12, 15, 18, 21, 25, 30, 34, 41, 46, 55, 63, 75, 85, 99, 114, 133, 152, 178, 201, 236, 269, 308, 352, 404, 460, 525, 594, 674, 763, 865, 974, 1098, 1236, 1385, 1558, 1745, 1952, 2181, 2435, 2712, 3026, 3363, 3740, 4151, 4612
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The strict partition y = (10,7,6,4,2,1) has maximal anti-runs ((10,7),(6,4,2),(1)), with lengths (2,3,1), so y is counted under a(30).
The a(1) = 1 through a(14) = 18 partitions (A-E = 10-14):
  1  2  3  4   5   6   7    8    9    A    B    C    D     E
           31  41  42  52   53   63   64   74   75   85    86
                   51  61   62   72   73   83   84   94    95
                       421  71   81   82   92   93   A3    A4
                            431  531  91   A1   A2   B2    B3
                            521  621  532  542  B1   C1    C2
                                      541  632  642  643   D1
                                      631  641  651  652   653
                                      721  731  732  742   743
                                           821  741  751   752
                                                831  832   761
                                                921  841   842
                                                     931   851
                                                     A21   932
                                                     6421  941
                                                           A31
                                                           B21
                                                           7421
		

Crossrefs

For subsets instead of strict partitions we have A384177.
For runs instead of anti-runs we have A384178.
This is the strict case of A384885.
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length.
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,30}]

A336342 Number of ways to choose a partition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 2, 7, 11, 29, 81, 155, 312, 708, 1950, 3384, 7729, 14929, 32407, 81708, 151429, 305899, 623713, 1234736, 2463743, 6208978, 10732222, 22487671, 43000345, 86573952, 160595426, 324990308, 744946690, 1336552491, 2629260284, 5050032692, 9681365777
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
Is there a simple generating function?

Examples

			The a(1) = 1 through a(4) = 11 ways:
  (1)  (2)    (3)        (4)
       (1,1)  (2,1)      (2,2)
              (1,1,1)    (3,1)
              (1),(2)    (1),(3)
              (2),(1)    (2,1,1)
              (1),(1,1)  (3),(1)
              (1,1),(1)  (1,1,1,1)
                         (1),(2,1)
                         (2,1),(1)
                         (1),(1,1,1)
                         (1,1,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of partitions are A323583.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Mathematica
    Table[Length[Join@@Table[Tuples[IntegerPartitions/@ctn],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,0,10}]
  • PARI
    seq(n)={[subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*numbpart(k) + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} k! * [y^k](Product_{j>=1} 1 + y*x^j*A000041(j)). - Andrew Howroyd, Apr 16 2021
Previous Showing 61-70 of 185 results. Next