cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 185 results. Next

A344062 Expansion of Product_{k>=1} (1 + 3^(k-1)*x^k).

Original entry on oeis.org

1, 1, 3, 12, 36, 135, 432, 1539, 4860, 17496, 55404, 192456, 623295, 2125764, 6849684, 23442453, 75110328, 252965916, 822670668, 2735858268, 8838926712, 29501352792, 95090206689, 314068876416, 1018141045092, 3342663979092, 10798571289897, 35481518064576
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Product[(1 + 3^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 3^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 27}]
  • PARI
    seq(n)={Vec(prod(k=1, n, 1 + 3^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021

Formula

a(n) = Sum_{k=0..A003056(n)} q(n,k) * 3^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ (-polylog(2, -1/3))^(1/4) * 3^n * exp(2*sqrt(-polylog(2, -1/3)*n)) / (4*sqrt(Pi/3)*n^(3/4)). - Vaclav Kotesovec, May 09 2021

A359900 Number of strict odd-length integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 4, 5, 4, 8, 10, 8, 15, 18, 17, 26, 27, 31, 43, 51, 53, 59, 81, 87, 109, 127, 115, 169, 194, 213, 255, 243, 322, 379, 431, 478, 487, 629, 667, 804, 907, 902, 1151, 1294, 1439, 1530, 1674, 2031, 2290, 2559, 2829, 2973, 3296, 3939
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Examples

			The a(7) = 1 through a(16) = 15 partitions (A=10, B=11, C=12, D=13):
  (421)  (431)  (621)  (532)  (542)  (651)  (643)  (653)  (762)  (754)
         (521)         (541)  (632)  (732)  (652)  (743)  (843)  (763)
                       (631)  (641)  (831)  (742)  (752)  (861)  (853)
                       (721)  (731)  (921)  (751)  (761)  (942)  (862)
                              (821)         (832)  (842)  (A32)  (871)
                                            (841)  (851)  (A41)  (943)
                                            (931)  (932)  (B31)  (952)
                                            (A21)  (941)  (C21)  (961)
                                                   (A31)         (A42)
                                                   (B21)         (A51)
                                                                 (B32)
                                                                 (B41)
                                                                 (C31)
                                                                 (D21)
                                                                 (64321)
		

Crossrefs

This is the strict case of A359896, complement A359895, ranked by A359892.
This is the odd-length case of A359898, complement A359897.
The complement is counted by A359899.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A359893/A359901/A359902 count partitions by median, ranked by A360005.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}]

A364467 Number of integer partitions of n where some part is the difference of two consecutive parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 13, 21, 28, 42, 55, 78, 106, 144, 187, 255, 325, 429, 554, 717, 906, 1165, 1460, 1853, 2308, 2899, 3582, 4468, 5489, 6779, 8291, 10173, 12363, 15079, 18247, 22124, 26645, 32147, 38555, 46285, 55310, 66093, 78684, 93674, 111104
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, the parts are not disjoint from their own first differences.

Examples

			The a(3) = 1 through a(9) = 13 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (431)      (621)
                       (2211)   (3211)    (521)      (3321)
                       (21111)  (22111)   (3221)     (4221)
                                (211111)  (4211)     (4311)
                                          (22211)    (5211)
                                          (32111)    (22221)
                                          (221111)   (32211)
                                          (2111111)  (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

For all differences of pairs parts we have A363225, complement A364345.
The complement is counted by A363260.
For subsets of {1..n} we have A364466, complement A364463.
The strict case is A364536, complement A364464.
These partitions have ranks A364537.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A050291 counts double-free subsets, complement A088808.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A364467(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A209318 Number T(n,k) of partitions of n with k parts in which no part occurs more than twice; triangle T(n,k), n>=0, 0<=k<=A055086(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 5, 3, 0, 1, 4, 6, 4, 1, 0, 1, 5, 8, 6, 2, 0, 1, 5, 10, 8, 3, 0, 1, 6, 11, 12, 5, 1, 0, 1, 6, 14, 14, 8, 1, 0, 1, 7, 16, 19, 11, 3, 0, 1, 7, 18, 23, 16, 5
Offset: 0

Views

Author

Alois P. Heinz, Jan 19 2013

Keywords

Examples

			T(8,3) = 5: [6,1,1], [5,2,1], [4,3,1], [4,2,2], [3,3,2].
T(8,4) = 3: [4,2,1,1], [3,3,1,1], [3,2,2,1].
T(9,3) = 6: [7,1,1], [6,2,1], [5,3,1], [4,4,1], [5,2,2], [4,3,2].
T(9,4) = 4: [5,2,1,1], [4,3,1,1], [4,2,2,1], [3,3,2,1].
T(9,5) = 1: [3,2,2,1,1].
Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2, 1;
  0, 1, 2, 2;
  0, 1, 3, 2, 1;
  0, 1, 3, 4, 1;
  0, 1, 4, 5, 3;
  0, 1, 4, 6, 4, 1;
		

Crossrefs

Columns k=0-10 give: A000007, A057427, A004526, A230059 (conjectured), A320592, A320593, A320594, A320595, A320596, A320597, A320598.
Row sums give: A000726.
Row lengths give: A000267.
Cf. A002620, A008289 (no part more than once), A055086, A117147 (no part more than 3 times).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(expand(b(n-i*j, i-1)*x^j), j=0..min(2, n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..20);
  • Mathematica
    max = 15; g = -1+Product[1+t*x^j+t^2*x^(2j), {j, 1, max}]; t[n_, k_] := SeriesCoefficient[g, {x, 0, n}, {t, 0, k}]; t[0, 0] = 1; Table[Table[t[n, k], {k, 0, n}] /. {a__, 0 ..} -> {a}, {n, 0, max}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)

A340830 Number of strict integer partitions of n such that every part is a multiple of the number of parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 6, 1, 5, 2, 6, 1, 8, 1, 7, 4, 7, 1, 12, 1, 8, 6, 9, 1, 16, 1, 10, 9, 11, 1, 21, 1, 12, 13, 12, 1, 28, 1, 13, 17, 16, 1, 33, 1, 19, 22, 15, 1, 45, 1, 16, 28, 25, 1, 47, 1, 28, 34, 18
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2021

Keywords

Examples

			The a(n) partitions for n = 1, 6, 10, 14, 18, 20, 24, 26, 30:
  1   6     10    14     18      20     24       26      30
      4,2   6,4   8,6    10,8    12,8   16,8     18,8    22,8
            8,2   10,4   12,6    14,6   18,6     20,6    24,6
                  12,2   14,4    16,4   20,4     22,4    26,4
                         16,2    18,2   22,2     24,2    28,2
                         9,6,3          14,10    14,12   16,14
                                        12,9,3   16,10   18,12
                                        15,6,3           20,10
                                                         15,9,6
                                                         18,9,3
                                                         21,6,3
                                                         15,12,3
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A143773 (A316428).
The case where length divides sum also is A340827.
The version for factorizations is A340851.
Factorization of this type are counted by A340853.
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions whose length/max divide sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A102627 counts strict partitions whose length divides sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340828 counts strict partitions with length divisible by maximum.
A340829 counts strict partitions with Heinz number divisible by sum.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@IntegerQ/@(#/Length[#])&]],{n,30}]

Formula

a(n) = Sum_{d|n} A008289(n/d, d).

A364907 Number of ways to write n as a nonnegative linear combination of an integer partition of n.

Original entry on oeis.org

1, 1, 4, 13, 50, 179, 696, 2619, 10119, 38867, 150407, 582065, 2260367, 8786919, 34225256, 133471650, 521216494, 2037608462, 7974105052, 31235316275, 122457794193, 480473181271, 1886555402750, 7412471695859, 29142658077266, 114643347181003, 451237737215201
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2023

Keywords

Comments

A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(0) = 1 through a(3) = 13 ways:
  0  1*1  1*2      1*3
          0*1+2*1  0*2+3*1
          1*1+1*1  1*2+1*1
          2*1+0*1  0*1+0*1+3*1
                   0*1+1*1+2*1
                   0*1+2*1+1*1
                   0*1+3*1+0*1
                   1*1+0*1+2*1
                   1*1+1*1+1*1
                   1*1+2*1+0*1
                   2*1+0*1+1*1
                   2*1+1*1+0*1
                   3*1+0*1+0*1
		

Crossrefs

The case with no zero coefficients is A000041.
A finer version is A364906.
The version for compositions is A364908, strict A364909.
Using just strict partitions we get A364910, main diagonal of A364916.
Main diagonal of A365004.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=0, 1, 0),
         `if`(i<1, 0, b(n, i-1, m)+add(b(n-i, min(i, n-i), m-i*j), j=0..m/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..27);  # Alois P. Heinz, Jan 28 2024
  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Join@@Table[combs[n,ptn],{ptn,IntegerPartitions[n]}]],{n,0,5}]

Formula

a(n) = Sum_{m:A056239(m)=n} A364906(m).
a(n) = A364912(2n,n).
a(n) = A365004(n,n).

Extensions

a(9)-a(26) from Alois P. Heinz, Jan 28 2024

A365378 Number of integer partitions with sum < n whose distinct parts cannot be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 2, 9, 5, 13, 10, 28, 7, 45, 25, 51, 32, 101, 31, 148, 50, 166, 106, 291, 47, 374, 176, 450, 179, 721, 121, 963, 285, 1080, 474, 1534, 200, 2140, 712, 2407, 599, 3539, 481, 4546, 1014, 4885
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The partition (5,2,2) has distinct parts {2,5} and has 11 = 3*2 + 1*5, so is not counted under a(11).
The partition (4,2,2) cannot be linearly combined to obtain 9, so is counted under a(9).
The partition (4,2,2) has distinct parts {2,4} and has 10 = 5*2 + 0*4, so is not counted under a(10).
The a(3) = 1 through a(10) = 10 partitions:
  (2)  (3)  (2)   (4)  (2)    (3)   (2)     (3)
            (3)   (5)  (3)    (5)   (4)     (4)
            (4)        (4)    (6)   (5)     (6)
            (22)       (5)    (7)   (6)     (7)
                       (6)    (33)  (7)     (8)
                       (22)         (8)     (9)
                       (33)         (22)    (33)
                       (42)         (42)    (44)
                       (222)        (44)    (63)
                                    (62)    (333)
                                    (222)
                                    (422)
                                    (2222)
		

Crossrefs

The complement for subsets is A365073, positive coefficients A088314.
For strict partitions we have A365312, positive coefficients A088528.
For positive coefficients we have A365323.
The complement is counted by A365379.
The version for subsets is A365380, positive coefficients A365322.
The relatively prime case is A365382.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],combs[n,Union[#]]=={}&]],{n,0,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365378(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n) for b in partitions(m) if not any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(21)-a(45) from Chai Wah Wu, Sep 13 2023

A383094 Number of integer partitions of n having exactly one permutation with all equal run-lengths.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 5, 6, 9, 7, 11, 10, 13, 12, 17, 14, 21, 16, 21, 18, 27, 22, 29, 22, 34, 25, 35, 28, 41, 28, 43, 30, 48, 38, 47, 38, 55, 36, 53, 46, 64, 40, 67, 42, 69, 54, 65, 46, 84, 51, 75, 62, 83, 52, 86, 62, 94, 70, 83, 58, 111, 60, 89, 80, 106, 74, 115, 66, 111
Offset: 0

Views

Author

Gus Wiseman, Apr 20 2025

Keywords

Examples

			The partition (222211) has exactly one permutation with all equal run-lengths: (221122), so is counted under a(10).
The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (11111)  (411)     (511)      (422)
                                     (111111)  (22111)    (611)
                                               (1111111)  (2222)
                                                          (22211)
                                                          (221111)
                                                          (11111111)
		

Crossrefs

The complement is ranked by A382879 \/ A383089.
For no choices we have A382915, ranks A382879.
For at least one choice we have A383013, for run-sums A383098, ranks A383110.
For more than one choice we have A383090, ranks A383089.
For at most one choice we have A383092, ranks A383091.
For run-sums instead of lengths we have A383095, ranks A383099.
Partitions of this type are ranked by A383112 = positions of 1 in A382857.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], SameQ@@Length/@Split[#]&]]==1&]],{n,0,20}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A340103 a(n) = [x^n] Product_{k>=1} (1 + n^(k-1)*x^k).

Original entry on oeis.org

1, 1, 2, 12, 80, 875, 10584, 170471, 2949120, 63772920, 1441000000, 38818444632, 1089573617664, 35185728919614, 1175820172477440, 44425722744140625, 1722925924631969792, 74364737115532234518, 3291298649632850485248, 159785357022861166517580, 7932051456000000000000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + n^(k - 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Unprotect[Power]; 0^0 = 1; Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] n^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 20}]
    Join[{1}, Table[SeriesCoefficient[n*QPochhammer[-1/n, n*x]/(n+1), {x, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 09 2021 *)

Formula

a(n) = Sum_{k=0..A003056(n)} q(n,k) * n^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ c * n^(n-1), where c = BesselI(1,2) = A096789 = 1.590636854637329... - Vaclav Kotesovec, May 09 2021

A364536 Number of strict integer partitions of n where some part is a difference of two consecutive parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 1, 2, 2, 5, 4, 6, 6, 9, 11, 16, 17, 23, 25, 30, 38, 48, 55, 65, 78, 92, 106, 127, 146, 176, 205, 230, 277, 315, 366, 421, 483, 552, 640, 727, 829, 950, 1083, 1218, 1408, 1577, 1794, 2017, 2298, 2561, 2919, 3255, 3685, 4116, 4638, 5163
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, strict partitions with parts not disjoint from first differences.

Examples

			The a(3) = 1 through a(15) = 11 partitions (A = 10, B = 11, C = 12):
  21  .  .  42   421  431  63   532   542   84    742   743   A5
            321       521  621  541   632   642   841   752   843
                                631   821   651   A21   761   942
                                721   5321  921   5431  842   C21
                                4321        5421  6421  B21   6432
                                            6321  7321  6431  6531
                                                        6521  7431
                                                        7421  7521
                                                        8321  8421
                                                              9321
                                                              54321
		

Crossrefs

For all differences of pairs we have A363226, non-strict A363225.
For all non-differences of pairs we have A364346, strict A364345.
The strict complement is counted by A364464, non-strict A363260.
For subsets of {1..n} we have A364466, complement A364463.
The non-strict case is A364467, ranks A364537.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, strict A120641.
A325325 counts partitions with distinct first-differences, strict A320347.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A364536(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), filter(lambda p:max(p[1].values(),default=1)==1,partitions(n,size=True))) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023
Previous Showing 81-90 of 185 results. Next