cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A182938 If n = Product (p_j^e_j) then a(n) = Product (binomial(p_j, e_j)).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 0, 3, 10, 11, 3, 13, 14, 15, 0, 17, 6, 19, 5, 21, 22, 23, 0, 10, 26, 1, 7, 29, 30, 31, 0, 33, 34, 35, 3, 37, 38, 39, 0, 41, 42, 43, 11, 15, 46, 47, 0, 21, 20, 51, 13, 53, 2, 55, 0, 57, 58, 59, 15, 61, 62, 21, 0, 65, 66
Offset: 1

Views

Author

Peter Luschny, Jan 16 2011

Keywords

Crossrefs

Programs

  • Haskell
    a182938 n = product $ zipWith a007318'
       (a027748_row n) (map toInteger $ a124010_row n)
    -- Reinhard Zumkeller, Feb 18 2012
  • Maple
    A182938 := proc(n) local e,j; e := ifactors(n)[2]:
    mul (binomial(e[j][1], e[j][2]), j=1..nops(e)) end:
    seq (A182938(n), n=1..100);
  • Mathematica
    a[n_] := Times @@ (Map[Binomial @@ # &, FactorInteger[n], 1]);
    Table[a[n], {n, 1, 100}] (* Kellen Myers, Jan 16 2011 *)
  • PARI
    a(n)=prod(i=1,#n=factor(n)~,binomial(n[1,i],n[2,i])) \\ M. F. Hasler
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)^p)[n], ", ")) \\ Vaclav Kotesovec, Mar 28 2025
    

Formula

a(A185359(n)) = 0. - Reinhard Zumkeller, Feb 18 2012
Dirichlet g.f.: Product_{p prime} (1 + p^(-s))^p. - Ilya Gutkovskiy, Oct 26 2019
Conjecture: Sum_{k=1..n} a(k) ~ c * n^2, where c = 0.33754... - Vaclav Kotesovec, Mar 28 2025

Extensions

Given terms checked with new PARI code by M. F. Hasler, Jan 16 2011

A303277 If n = Product (p_j^k_j) then a(n) = (Sum (k_j))^(Sum (p_j)).

Original entry on oeis.org

1, 1, 1, 4, 1, 32, 1, 9, 8, 128, 1, 243, 1, 512, 256, 16, 1, 243, 1, 2187, 1024, 8192, 1, 1024, 32, 32768, 27, 19683, 1, 59049, 1, 25, 16384, 524288, 4096, 1024, 1, 2097152, 65536, 16384, 1, 531441, 1, 1594323, 6561, 33554432, 1, 3125, 128, 2187, 1048576, 14348907, 1, 1024, 65536
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2018

Keywords

Examples

			a(48) = a(2^4 * 3^1) = (4 + 1)^(2 + 3) = 5^5 = 3125.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[PrimeOmega[n]^DivisorSum[n, # &, PrimeQ[#] &], {n, 2, 55}]]
  • PARI
    a(n) = my(f=factor(n)); vecsum(f[,2])^vecsum(f[,1]); \\ Michel Marcus, Apr 21 2018

Formula

a(n) = bigomega(n)^sopf(n) = A001222(n)^A008472(n).
a(p^k) = k^p where p is a prime.
a(A000312(k)) = a(k)*k^A008472(k).
a(A000142(k)) = A022559(k)^A034387(k).
a(A002110(k)) = k^A007504(k).

A381178 Irregular triangle read by rows, where row n lists the elements of the multiset of bases and exponents (including exponents = 1) in the prime factorization of n.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 5, 1, 1, 2, 3, 1, 7, 2, 3, 2, 3, 1, 1, 2, 5, 1, 11, 1, 2, 2, 3, 1, 13, 1, 1, 2, 7, 1, 1, 3, 5, 2, 4, 1, 17, 1, 2, 2, 3, 1, 19, 1, 2, 2, 5, 1, 1, 3, 7, 1, 1, 2, 11, 1, 23, 1, 2, 3, 3, 2, 5, 1, 1, 2, 13, 3, 3, 1, 2, 2, 7, 1, 29, 1, 1, 1, 2, 3, 5, 1, 31
Offset: 2

Views

Author

Paolo Xausa, Feb 27 2025

Keywords

Comments

Terms in each row are sorted; cf. A035306, where they are given in (base, exponent) groups.

Examples

			Triangle begins:
   [2]  1, 2;
   [3]  1, 3;
   [4]  2, 2;
   [5]  1, 5;
   [6]  1, 1, 2, 3;
   [7]  1, 7;
   [8]  2, 3;
   [9]  2, 3;
  [10]  1, 1, 2, 5;
  ...
The prime factorization of 10 is 2^1*5^1 and the multiset of these bases and exponents is {1, 1, 2, 5}.
The prime factorization of 132 is 2^2*3^1*11^1 and the multiset of these bases and exponents is {1, 1, 2, 2, 3, 11}.
		

Crossrefs

Cf. A000026 (row products), A001221 (row lengths, divided by 2), A008474 (row sums).
Cf. A081812 (right border), A381212 (first column), A381576 (second column).

Programs

  • Mathematica
    A381178row[n_] := Sort[Flatten[FactorInteger[n]]];
    Array[A381178row, 30, 2]

A107737 Numbers n such that, in prime decomposition of n, sum of all prime factors and their orders is prime.

Original entry on oeis.org

2, 6, 8, 9, 14, 25, 26, 30, 32, 38, 40, 45, 56, 63, 66, 70, 74, 75, 81, 86, 88, 96, 99, 100, 104, 117, 121, 130, 134, 136, 138, 144, 147, 153, 154, 158, 160, 168, 174, 184, 190, 194, 196, 206, 207, 216, 218, 238, 248, 250, 252, 254, 266, 275, 279, 280, 286, 289
Offset: 1

Views

Author

Zak Seidov, May 23 2005

Keywords

Comments

Corresponding primes in A107738. Cf. A008474 If n = Product (p_j^k_j) then a(n) = Sum (p_j + k_j).

Examples

			n = 104 OK because 104 = 2^3 * 13^1 => (2+3)+(13+1) = 19 is prime.
		

Crossrefs

Programs

  • Mathematica
    ta=Table[Plus @@ Flatten[FactorInteger[n]], {n, 300}];bb={};Do[If[PrimeQ[t=ta[[i]]], bb=Append[bb, {i, t}]], {i, 300}];tr=Transpose[bb];A107738=tr[[2]];A107737=tr[[1]]
    Select[Range[2,300],PrimeQ[Total[Flatten[FactorInteger[#]]]]&] (* Harvey P. Dale, Feb 05 2017 *)

A107738 Primes as a sum of prime factors and their orders in prime decomposition of some n.

Original entry on oeis.org

3, 7, 5, 5, 11, 7, 17, 13, 7, 23, 11, 11, 13, 13, 19, 17, 41, 11, 7, 47, 17, 11, 17, 11, 19, 19, 13, 23, 71, 23, 31, 11, 13, 23, 23, 83, 13, 17, 37, 29, 29, 101, 13, 107, 29, 11, 113, 29, 37, 11, 17, 131, 31, 19, 37, 19, 29, 19, 43
Offset: 1

Views

Author

Zak Seidov, May 23 2005

Keywords

Crossrefs

Primes occurring in A008474.
Cf. A107737.

Programs

  • Mathematica
    ta=Table[Plus @@ Flatten[FactorInteger[n]], {n, 300}];bb={};Do[If[PrimeQ[t=ta[[i]]], bb=Append[bb, {i, t}]], {i, 300}];tr=Transpose[bb];A107737=tr[[1]];A107738=tr[[2]]

A112376 Sum of base and exponent of prime powers.

Original entry on oeis.org

3, 4, 4, 6, 8, 5, 5, 12, 14, 6, 18, 20, 24, 7, 6, 30, 32, 7, 38, 42, 44, 48, 9, 54, 60, 62, 8, 68, 72, 74, 80, 7, 84, 90, 98, 102, 104, 108, 110, 114, 13, 8, 128, 9, 132, 138, 140, 150, 152, 158, 164, 168, 15, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242
Offset: 1

Views

Author

Zak Seidov, Dec 04 2005

Keywords

Comments

If n = p^q, where p is prime and q > 0, then p+q is in the sequence.
If n is not of that form, omit the term.
Might be a good "puzzle" sequence - guess the rule given the first ten or so terms.

Examples

			n = 3 = 3^1, so 3+1 = 4 is a term; n = 4 = 2^2, so 2+2 = 4 is again a term; n = 5 = 5^1, so we get 5+1 =6.
But 6 is not a prime power, so we skip it.
		

Crossrefs

A008474 is another version, defined for all n.

Programs

  • Mathematica
    fsum[a_] := Total[Flatten[FactorInteger[a]]]; fsum/@Select[Range[242], PrimePowerQ](* James C. McMahon, Jun 08 2024 *)
  • PARI
    for(n=1,300,fac=factor(n);if(matsize(fac)[1]==1,print1(fac[1,1]+fac[1,2],",")))

Extensions

Edited and extended by Klaus Brockhaus, Jan 21 2006
Further edited by N. J. A. Sloane, Nov 19 2018

A247095 Smallest number m such that A250030(m) = n.

Original entry on oeis.org

8, 7, 6, 5, 13, 30, 29, 157, 317, 626, 3095, 6637, 26833, 145687, 461938, 1068037, 16007153, 54690697
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 18 2014

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a247095 = (+ 5) . fromJust . (`elemIndex` a250030_list)
    
  • PARI
    A008474(n)=my(f=factor(n)); sum(i=1, #f~, f[i, 1]+f[i, 2]);
    f(n)=my(k); while(n!=5, n=A008474(n); k++); k; \\ A250030
    a(n) = my(k=5); while(f(k) != n, k++); k; \\ Michel Marcus, Feb 05 2022

Formula

A250030(a(n)) = n and A250030(m) != n for m < a(n).

Extensions

a(17)-a(18) from Michel Marcus, Feb 05 2022

A135369 a(0)=1, a(1)=2; thereafter, let n! = p(1)^b(1)...p(r)^b(r) be the prime factorization of n!. Then a(n) = Sum_{i=1..r} (p(i) + b(i)).

Original entry on oeis.org

1, 2, 3, 7, 9, 15, 17, 25, 28, 30, 32, 44, 47, 61, 63, 65, 69, 87, 90, 110, 113, 115, 117, 141, 145, 147, 149, 152, 155, 185, 188, 220, 225, 227, 229, 231, 235, 273, 275, 277, 281, 323, 326, 370, 373, 376, 378, 426, 431, 433, 436, 438, 441, 495, 499, 501, 505
Offset: 0

Views

Author

Ctibor O. Zizka, Feb 17 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A008474(n!) if n>1. - R. J. Mathar, Feb 28 2008

Extensions

More terms from R. J. Mathar, Feb 28 2008

A382330 a(n) is the number of positive integers k for which Sum_{i=1..j} (p_i+e_i) = n, where p_1^e_1*...*p_j^e_j is the prime factorization of k.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 4, 6, 8, 11, 15, 21, 27, 36, 47, 61, 79, 104, 133, 170, 215, 272, 343, 433, 542, 678, 845, 1050, 1300, 1608, 1981, 2437, 2988, 3655, 4460, 5433, 6603, 8014, 9705, 11731, 14155, 17055, 20509, 24624, 29512, 35313, 42184, 50315, 59916, 71248, 84598
Offset: 1

Views

Author

Felix Huber, Mar 23 2025

Keywords

Comments

a(n) is the number of positive integers k for A008474(k) = n.

Examples

			The a(7) = 4 positive integers k are 32 = 2^5, 81 = 3^4, 25 = 5^2, 6 = 2^1*3^1 because 2 + 5 = 3 + 4 = 5 + 2 = 2 + 1 + 3 + 1 = 7 and there is no further positive integer with that property.
The a(11) = 15 positive integers k are 512 = 2^9, 6561 = 3^8, 15625 = 5^6, 2401 = 7^4, 96 = 2^5*3^1, 144 = 2^4*3^2, 216 = 2^3*3^3, 324 = 2^2*3^4, 486 = 2^1*3^5, 40 = 2^3*5^1, 100 = 2^2*5^2, 250 = 2^1*5^3, 14 = 2^1*7^1, 45 = 3^2*5^1, 75 = 3^1*5^2 because 2 + 9 = 3 + 8 = 5 + 6 = 7 + 4 = 2 + 5 + 3 + 1 = 2 + 4 + 3 + 2 = 2 + 3 + 3 + 3 = 2 + 2 + 3 + 4 = 2 + 1 + 3 + 5 = 2 + 3 + 5 + 1 = 2 + 2 + 5 + 2 = 2 + 1 + 5 + 3 = 2 + 1 + 7 + 1 = 3 + 2 + 5 + 1 = 3 + 1 + 5 + 2 = 11 and there is no further positive integer with that property.
		

Crossrefs

Programs

  • Maple
    # processes b and T from Alois P. Heinz (A219180).
    b:= proc(n,i) option remember;
          `if`(n=0,[1],`if`(i<1,[],zip((x,y)->x+y,b(n,i-1),
           [0,`if`(ithprime(i)>n,[],b(n-ithprime(i),i-1))[]],0)))
        end:
    T:= proc(n) local l;l:=b(n,NumberTheory:-pi(n));
           while nops(l)>0 and l[-1]=0 do l:=subsop(-1=NULL,l) od; l[]
        end:
    A382330:=proc(n)
        local a,k,s,i,j,L;
        a:=0;k:=1;s:=0;
        while s+k<=n do
            s:=s+ithprime(k);k:=k+1
        od;
        for i to k-1 do
            for j to n-i do
                L:=[T(j)];
                if nops(L)>=i+1 then
                    a:=a+L[i+1]*binomial(n-j-1,n-j-i);
                fi
            od
        od;
        return a
    end proc;
    seq(A382330(n),n=1..51);

A385644 Swap multiplication and exponentiation in the canonical prime factorization of n.

Original entry on oeis.org

2, 3, 4, 5, 8, 7, 6, 6, 32, 11, 64, 13, 128, 243, 8, 17, 64, 19, 1024, 2187, 2048, 23, 216, 10, 8192, 9, 16384, 29, 14134776518227074636666380005943348126619871175004951664972849610340958208, 31, 10, 177147, 131072, 78125, 4096, 37, 524288, 1594323, 7776, 41
Offset: 2

Views

Author

Jens Ahlström, Jul 06 2025

Keywords

Comments

In the canonical prime factorization of n larger than one, swap multiplication and exponentiation and calculate the result.

Examples

			a(6) = a(2 * 3) = 2^3 = 8,
a(24) = a(2^3 * 3) = (2 * 3)^3 = 216,
a(30) = a(2 * 3 * 5) = 2^3^5 = 2^243.
		

Crossrefs

Programs

  • Mathematica
    f[{p_,e_}]:=p*e;a[n_]:=Module[{pp=f/@FactorInteger[n]},r=pp[[-1]];Do[r=pp[[Length[pp]-i]]^r,{i,1,Length[pp]-1}];r];Array[a,40,2] (* James C. McMahon, Jul 11 2025 *)
    A385644[n_] := Power @@ Times @@@ FactorInteger[n];
    Array[A385644, 40, 2] (* Paolo Xausa, Jul 14 2025 *)
  • Python
    from sympy import factorint
    from functools import reduce
    def rpow(a, b):
        return b**a
    def a(n):
        return reduce(rpow, [p*e for p, e in reversed(factorint(n).items())])
    print([a(n) for n in range(2, 42)])
Previous Showing 11-20 of 24 results. Next