cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 68 results. Next

A185325 Number of partitions of n into parts >= 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 18, 21, 26, 30, 36, 42, 50, 58, 70, 80, 95, 110, 129, 150, 176, 202, 236, 272, 317, 364, 423, 484, 560, 643, 740, 847, 975, 1112, 1277, 1456, 1666, 1897, 2168, 2464, 2809, 3189, 3627, 4112, 4673
Offset: 0

Views

Author

Jason Kimberley, Nov 11 2011

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 5 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 5, an A026798 partition of n becomes an A185325 partition of n - 5. Hence this sequence is essentially the same as A026798.
a(n) = number of partitions of n+4 such that 4*(number of parts) is a part. - Clark Kimberling, Feb 27 2014

Crossrefs

2-regular simple graphs with girth at least 5: A185115 (connected), A185225 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), this sequence (g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs with girth at least 5: A185315 (any k), A185305 (triangle); specified degree k: this sequence (k=2), A185335 (k=3).

Programs

  • Magma
    p :=  func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
    A185325 := func;
    [A185325(n):n in[0..60]];
    
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+5): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(m+5), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Drop[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 4*Length[p]]], {n, 40}], 3]  (* Clark Kimberling, Feb 27 2014 *)
    CoefficientList[Series[1/QPochhammer[x^5, x], {x, 0, 70}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+5))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185325_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+5)) for m in (0..80)) ).list()
    A185325_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=5} 1/(1-x^m).
Given by p(n) -p(n-1) -p(n-2) +2*p(n-5) -p(n-8) -p(n-9) +p(n-10), where p(n) = A000041(n). - Shanzhen Gao, Oct 28 2010 [sign of 10 corrected from + to -, and moved from A026798 to this sequence by Jason Kimberley].
This sequence is the Euler transformation of A185115.
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^4 / (6*sqrt(3)*n^3). - Vaclav Kotesovec, Jun 02 2018
G.f.: exp(Sum_{k>=1} x^(5*k)/(k*(1 - x^k))). - Ilya Gutkovskiy, Aug 21 2018
G.f.: 1 + Sum_{n >= 1} x^(n+4)/Product_{k = 0..n-1} (1 - x^(k+5)). - Peter Bala, Dec 01 2024

A051031 Triangle read by rows: T(n,r) is the number of not necessarily connected r-regular graphs with n nodes, 0 <= r < n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 2, 0, 2, 0, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 0, 4, 0, 16, 0, 4, 0, 1, 1, 1, 5, 21, 60, 60, 21, 5, 1, 1, 1, 0, 6, 0, 266, 0, 266, 0, 6, 0, 1, 1, 1, 9, 94, 1547, 7849, 7849, 1547, 94, 9, 1, 1, 1, 0, 10, 0, 10786, 0, 367860, 0, 10786
Offset: 1

Views

Author

Keywords

Comments

A graph in which every node has r edges is called an r-regular graph. The triangle is symmetric because if an n-node graph is r-regular, than its complement is (n - 1 - r)-regular and two graphs are isomorphic if and only if their complements are isomorphic.
Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A295193. Burnside's lemma can be used to extend this method to the unlabeled case. - Andrew Howroyd, Mar 08 2020

Examples

			T(8,3) = 6. Edge-lists for the 6 3-regular 8-node graphs:
  Graph 1: 12, 13, 14, 23, 24, 34, 56, 57, 58, 67, 68, 78
  Graph 2: 12, 13, 14, 24, 34, 26, 37, 56, 57, 58, 68, 78
  Graph 3: 12, 13, 23, 14, 47, 25, 58, 36, 45, 67, 68, 78
  Graph 4: 12, 13, 23, 14, 25, 36, 47, 48, 57, 58, 67, 68
  Graph 5: 12, 13, 24, 34, 15, 26, 37, 48, 56, 57, 68, 78
  Graph 6: 12, 23, 34, 45, 56, 67, 78, 18, 15, 26, 37, 48.
Triangle starts
  1;
  1, 1;
  1, 0, 1;
  1, 1, 1,  1;
  1, 0, 1,  0,    1;
  1, 1, 2,  2,    1,    1;
  1, 0, 2,  0,    2,    0,    1;
  1, 1, 3,  6,    6,    3,    1,    1;
  1, 0, 4,  0,   16,    0,    4,    0,  1;
  1, 1, 5, 21,   60,   60,   21,    5,  1, 1;
  1, 0, 6,  0,  266,    0,  266,    0,  6, 0, 1;
  1, 1, 9, 94, 1547, 7849, 7849, 1547, 94, 9, 1, 1;
  ...
		

Crossrefs

Row sums give A005176.
Regular graphs of degree k: A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).

Formula

T(n,r) = A068934(n,r) + A068933(n,r).

Extensions

More terms and comments from David Wasserman, Feb 22 2002
More terms from Eric W. Weisstein, Oct 19 2002
Description corrected (changed 'orders' to 'degrees') by Jason Kimberley, Sep 06 2009
Extended to the sixteenth row (in the b-file) by Jason Kimberley, Sep 24 2009

A026797 Number of partitions of n in which the least part is 4.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 24, 27, 34, 39, 50, 57, 70, 81, 100, 115, 140, 161, 195, 225, 269, 311, 371, 427, 505, 583, 688, 791, 928, 1067, 1248, 1434, 1668, 1914, 2223, 2546, 2945, 3370, 3889
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of, not necessarily connected, 2-regular simple graphs girth exactly 4. - Jason Kimberley, Feb 22 2013

Crossrefs

Essentially the same as A008484.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), this sequence (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: this sequence (k=2), A185134 (k=3), A185144 (k=4).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0] cat Coefficients(R!( x^4/(&*[1-x^(m+4): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(x^4/mul(1-x^(m+4), m=0..65), x, n+1), x, n), n = 1..60); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Table[Count[IntegerPartitions[n],?(Min[#]==4&)],{n,60}] (* _Harvey P. Dale, May 13 2012 *)
    Rest@CoefficientList[Series[x^4/QPochhammer[x^4, x], {x,0,60}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^60)); concat([0,0,0], Vec(x^4/prod(m=0,70, 1-x^(m+4)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026797_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^4/product((1-x^(m+4)) for m in (0..60)) ).list()
    a=A026797_list(60); a[1:] # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^4 * Product_{m>=4} 1/(1-x^m).
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^3 / (12*sqrt(2)*n^(5/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(4*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

A165652 Number of disconnected 2-regular graphs on n vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 8, 9, 12, 16, 20, 24, 32, 38, 48, 59, 72, 87, 109, 129, 157, 190, 229, 272, 330, 390, 467, 555, 659, 778, 926, 1086, 1283, 1509, 1774, 2074, 2437, 2841, 3322, 3871, 4509, 5236, 6094, 7055, 8181, 9464, 10944, 12624, 14577, 16778, 19322, 22209
Offset: 0

Views

Author

Jason Kimberley, Sep 28 2009

Keywords

Comments

a(n) is also the number of partitions of n such that each part i satisfies 2
For n>=2, it appears that a(n+1) is the number of (1,0)-separable partitions of n, as defined at A239482. For example, the four (1,0)-separable partitions of 9 are 621, 531, 441, 31212, corresponding to a(10) = 4. - Clark Kimberling, Mar 21 2014.

Examples

			The a(6)=1 graph is C_3+C_3. The a(7)=1 graph is C_3+C_4. The a(8)=2 graphs are C_3+C_5, C_4+C_4. The a(9)=3 graphs are 3C_3, C_3+C_6, C_4+C_5.
		

Crossrefs

2-regular simple graphs: A179184 (connected), this sequence (disconnected), A008483 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A157928 (k=0), A157928 (k=1), this sequence (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8).
Disconnected 2-regular simple graphs with girth at least g: this sequence (g=3), A185224 (g=4), A185225 (g=5), A185226 (g=6), A185227 (g=7), A185228 (g=8), A185229 (g=9).
Cf. A239482.

Programs

  • Magma
    p := NumberOfPartitions; a := func< n | n lt 3 select 0 else p(n) - p(n-1) - p(n-2) + p(n-3) - 1 >;

Formula

a = A008483 - A179184 = Euler_tranformation(A179184) - A179184.
For n > 2, since there is exactly one connected 2-regular graph on n vertices (the n cycle C_n) then a(n) = A008483(n) - 1.
(A008483(n) is also the number of not necessarily connected 2-regular graphs on n vertices.)
Column D(n, 2) in the triangle A068933.

A185326 Number of partitions of n into parts >= 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 16, 17, 21, 24, 29, 32, 40, 44, 53, 60, 71, 80, 96, 107, 126, 143, 167, 188, 221, 248, 288, 326, 376, 424, 491, 552, 634, 716, 819, 922, 1056, 1187, 1353, 1523, 1730, 1944, 2209, 2478, 2806, 3151
Offset: 0

Author

Jason Kimberley, Jan 30 2012

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 6 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 6, an A026799 partition of n becomes an A185326 partition of n - 6. Hence this sequence is essentially the same as A026799.

Crossrefs

2-regular simple graphs with girth at least 6: A185116 (connected), A185226 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), this sequence (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    A185326 := func;
    
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+6): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(m+6), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    CoefficientList[Series[1/QPochhammer[x^6, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+6))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185326_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+6)) for m in (0..80)) ).list()
    A185326_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=6} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-6) + p(n-7) - p(n-8) - p(n-9) - p(n-10) + p(n-13) + p(n-14) - p(n-15) where p(n) = A000041(n).
a(n) = A185226(n) + A185116(n).
This sequence is the Euler transformation of A185116.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^5 / (18*sqrt(2)*n^(7/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(6*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+5)/Product_{k = 0..n-1} (1 - x^(k+6)). - Peter Bala, Dec 01 2024

A026798 Number of partitions of n in which the least part is 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 18, 21, 26, 30, 36, 42, 50, 58, 70, 80, 95, 110, 129, 150, 176, 202, 236, 272, 317, 364, 423, 484, 560, 643, 740, 847, 975, 1112, 1277, 1456, 1666, 1897, 2168
Offset: 0

Keywords

Comments

Also the number of not necessarily connected 2-regular simple graphs with girth exactly 5. - Jason Kimberley, Nov 11 2011
Such partitions of n+5 correspond to A185325 partitions (parts >= 5) of n by removing a single part of size 5. - Jason Kimberley, Nov 11 2011

Crossrefs

Essentially the same as A185325.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), this sequence (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Nov 11 2011

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [1,0,0,0,0] cat Coefficients(R!( x^5/(&*[1-x^(m+5): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    ZL := [ B,{B=Set(Set(Z, card>=5))}, unlabeled ]: 1,0,0,0,0, seq(combstruct[count](ZL, size=n), n=0..54); # Zerinvary Lajos, Mar 13 2007
    1, seq(coeff(series(x^5/mul(1-x^(m+5), m=0..70), x, n+1), x, n), n = 0..65); # G. C. Greubel, Nov 03 2019
  • Mathematica
    f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Join[{1, 0, 0, 0, 0, 1}, Table[ f[n, 5], {n, 50}]] (* Robert G. Wilson v *)
    Join[{1}, Drop[CoefficientList[Series[x^5/QPochhammer[x^5, x], {x,0,60}], x], 1]] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^60)); concat([1,0,0,0,0], Vec(x^5/prod(m=0,70, 1-x^(m+5)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026798_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^5/product((1-x^(m+5)) for m in (0..70)) ).list()
    a=A026798_list(65); [1]+a[1:] # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^5 * Product_{m>=5} 1/(1-x^m).
a(n+5) is given by p(n) - p(n-1) - p(n-2) + 2p(n-5) - p(n-8) - p(n-9) + p(n-10) where p(n) = A000041(n). - Shanzhen Gao, Oct 28 2010 [sign of 10 and offset of formula corrected by Jason Kimberley, Nov 11 2011]
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^4 / (6*sqrt(3)*n^3). - Vaclav Kotesovec, Jun 02 2018

A185329 Number of partitions of n with parts >= 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 24, 26, 30, 34, 39, 43, 50, 55, 63, 71, 80, 89, 102, 113, 128, 143, 161, 179, 203, 225, 253, 282, 316, 351, 395, 437, 489, 544, 607, 673, 752, 832, 927, 1028, 1143
Offset: 0

Author

Jason Kimberley, Feb 01 2012

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 9 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 9, an A026802 partition of n becomes an A185329 partition of n - 9. Hence this sequence is essentially the same as A026802.
In general, if g>=1 and g.f. = Product_{m>=g} 1/(1-x^m), then a(n,g) ~ Pi^(g-1) * (g-1)! * exp(Pi*sqrt(2*n/3)) / (2^((g+3)/2) * 3^(g/2) * n^((g+1)/2)) ~ p(n) * Pi^(g-1) * (g-1)! / (6*n)^((g-1)/2), where p(n) is the partition function A000041(n). - Vaclav Kotesovec, Jun 02 2018

Crossrefs

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), this sequence (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+9): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(m+9), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    CoefficientList[Series[x^9/QPochhammer[x^9, x], {x,0,75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+9))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185329_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+9)) for m in (0..80)) ).list()
    A185329_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=9} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) + p(n-9) - p(n-11) - 2*p(n-12) - p(n-13) - p(n-15) + p(n-16) + p(n-17) + 2*p(n-18) + p(n-19) + p(n-20) - p(n-21) - p(n-23) - 2*p(n-24) - p(n-25) + p(n-27) + p(n-29) + p(n-31) - p(n-34) - p(n-35) + p(n-36) where p(n)=A000041(n). - Shanzhen Gao
This sequence is the Euler transformation of A185119.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 70*Pi^8 / (9*sqrt(3)*n^5). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(9*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+8)/Product_{k = 0..n-1} (1 - x^(k+9)). - Peter Bala, Dec 01 2024

A026799 Number of partitions of n in which the least part is 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 16, 17, 21, 24, 29, 32, 40, 44, 53, 60, 71, 80, 96, 107, 126, 143, 167, 188, 221, 248, 288, 326, 376, 424, 491, 552, 634, 716, 819, 922, 1056, 1187, 1353, 1523, 1730, 1944, 2209, 2478, 2806, 3151
Offset: 0

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth exactly 6 (all such graphs are simple). Each integer part i corresponds to an i-cycle; the addition of integers corresponds to the disconnected union of cycles.

Examples

			a(0)=0 because there does not exist a least part of the empty partition.
The  a(6)=1 partition is 6.
The a(12)=1 partition is 6+6.
The a(13)=1 partition is 6+7.
.............................
The a(17)=1 partition is 6+11.
The a(18)=2 partitions are 6+6+6 and 6+12.
		

Crossrefs

Essentially the same as A185326.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), this sequence (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 04 2011

Programs

  • Magma
    p :=  func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
    A026799 := func< n | p(n-6)-p(n-7)-p(n-8)+p(n-11)+p(n-12)+p(n-13)- p(n-14)-p(n-15)-p(n-16)+p(n-19)+p(n-20)-p(n-21) >; // Jason Kimberley, Feb 04 2011
    
  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0] cat Coefficients(R!( x^6/(&*[1-x^(m+6): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    ZL := [ B,{B=Set(Set(Z, card>=6))}, unlabeled ]: 0,0,0,0,0,0, seq(combstruct[count](ZL, size=n), n=0..63); # Zerinvary Lajos, Mar 13 2007
    seq(coeff(series(x^6/mul(1-x^(m+6), m=0..70), x, n+1), x, n), n = 0..65); # G. C. Greubel, Nov 03 2019
  • Mathematica
    f[1, 1]=f[0, k_]=1; f[n_, k_]:= f[n, k] = If[n<0, 0, If[k>n, 0, If[k==n, 1, f[n, k+1] +f[n-k, k]]]]; Join[{0,0,0,0,0,0}, Table[f[n, 6], {n, 0, 65}]] (* Robert G. Wilson v, Jan 31 2011 *)
    CoefficientList[Series[x^6/QPochhammer[x^6, x], {x,0,70}], x] (* G. C. Greubel, Nov 03 2019 *)
    Join[{0},Table[Count[IntegerPartitions[n][[;;,-1]],6],{n,70}]] (* Harvey P. Dale, Dec 27 2023 *)
  • PARI
    my(x='x+O('x^60)); concat([0,0,0,0,0,0], Vec(x^6/prod(m=0,70, 1-x^(m+6)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026799_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^6/product((1-x^(m+6)) for m in (0..70)) ).list()
    A026799_list(65) # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^6 * Product_{m>=6} 1/(1-x^m).
a(n) = p(n-6) -p(n-7) -p(n-8) +p(n-11) +p(n-12) +p(n-13) -p(n-14) -p(n-15) -p(n-16) +p(n-19) +p(n-20) -p(n-21) for n>0 where p(n) = A000041(n). - Shanzhen Gao, Oct 28 2010
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^5 / (18*sqrt(2)*n^(7/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(6*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

A185327 Number of partitions of n into parts >= 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 18, 20, 24, 27, 32, 36, 42, 48, 56, 63, 73, 83, 96, 108, 125, 141, 162, 183, 209, 236, 270, 304, 346, 390, 443, 498, 565, 635, 719, 807, 911, 1022, 1153, 1291, 1453, 1628, 1829, 2045
Offset: 0

Author

Jason Kimberley, Feb 03 2011

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 7 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 7, an A026800 partition of n becomes an A185327 partition of n - 7. Hence this sequence is essentially the same as A026800.

Examples

			The  a(0)=1 empty partition vacuously has each part >= 7.
The  a(7)=1 partition is 7.
The  a(8)=1 partition is 8.
............................
The a(13)=1 partition is 13.
The a(14)=2 partitions are 7+7 and 14.
		

Crossrefs

2-regular simple graphs with girth at least 7: A185117 (connected), A185227 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), this sequence (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    p :=  func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
    A185327 := func< n | p(n)-p(n-1)-p(n-2)+p(n-5)+2*p(n-7)-p(n-9)-p(n-10)- p(n-11)-p(n-12)+2*p(n-14)+p(n-16)-p(n-19)-p(n-20)+p(n-21) >;
    
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+7): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(m+7), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    f[1, 1] = f[0, k_] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 7], {n, 0, 65}] (* Robert G. Wilson v, Jan 31 2011 *) (* moved from A026800 by Jason Kimberley, Feb 03 2011 *)
    Join[{1},Table[Count[IntegerPartitions[n],?(Min[#]>=7&)],{n,0,70}]] (* _Harvey P. Dale, Oct 16 2011 *)
    CoefficientList[Series[1/QPochhammer[x^7, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+7))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185327_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+7)) for m in (0..80)) ).list()
    A185327_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=7} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + 2*p(n-7) - p(n-9) - p(n-10) - p(n-11) - p(n-12) + 2*p(n-14) + p(n-16) - p(n-19) - p(n-20) + p(n-21) where p(n)=A000041(n). - Shanzhen Gao, Oct 28 2010 [moved/copied from A026800 by Jason Kimberley, Feb 03 2011]
This sequence is the Euler transformation of A185117.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^6 / (6*sqrt(3)*n^4). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(7*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+6)/Product_{k = 0..n-1} (1 - x^(k+7)). - Peter Bala, Dec 01 2024

A185328 Number of partitions of n with parts >= 8.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 10, 12, 13, 16, 17, 21, 23, 27, 30, 36, 39, 46, 51, 60, 66, 77, 85, 99, 110, 126, 140, 162, 179, 205, 228, 260, 289, 329, 365, 415, 461, 521, 579, 655, 726, 818, 909, 1022, 1134, 1273, 1411
Offset: 0

Author

Jason Kimberley, Jan 31 2012

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 8 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 8, an A026801 partition of n becomes an A185328 partition of n - 8. Hence this sequence is essentially the same as A026801.

Crossrefs

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), this sequence (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+8): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    N:= 100: # for a(0)..a(N)
    g:= mul(1/(1-x^m),m=8..N):
    S:= series(g,x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Dec 19 2017
  • Mathematica
    CoefficientList[Series[1/QPochhammer[x^8, x], {x,0,75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+8))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185328_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+8)) for m in (0..80)) ).list()
    A185328_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=8} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) + p(n-8) - p(n-10) - p(n-11) - 2*p(n-12) + 2*p(n-16) + p(n-17) + p(n-18) - p(n-20) - p(n-21) - p(n-23) + p(n-26) + p(n-27) - p(n-28) where p(n)=A000041(n). - Shanzhen Gao
This sequence is the Euler transformation of A185118.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 35*Pi^7 / (18*sqrt(2)*n^(9/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(8*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+7)/Product_{k = 0..n-1} (1 - x^(k+8)). - Peter Bala, Dec 01 2024
Previous Showing 11-20 of 68 results. Next