A166394
Multiples of 7 whose reversal - 1 is also a multiple of 7.
Original entry on oeis.org
63, 112, 119, 182, 189, 203, 273, 364, 455, 546, 630, 637, 721, 728, 791, 798, 812, 819, 882, 889, 903, 973, 1036, 1120, 1127, 1190, 1197, 1211, 1218, 1281, 1288, 1302, 1309, 1372, 1379, 1463, 1554, 1645, 1736, 1820, 1827, 1890, 1897, 1911, 1918, 1981, 1988
Offset: 1
-
Select[7 Range[5!], Divisible[FromDigits[Reverse[IntegerDigits[#]]] - 1, 7] &] (* G. C. Greubel, May 12 2016 *)
A168622
Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 21, 21, 1;
1, 28, 42, 28, 1;
1, 35, 70, 70, 35, 1;
1, 42, 105, 140, 105, 42, 1;
1, 49, 147, 245, 245, 147, 49, 1;
1, 56, 196, 392, 490, 392, 196, 56, 1;
1, 63, 252, 588, 882, 882, 588, 252, 63, 1;
1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
-
A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >;
[A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
-
(* First program *)
p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten
(* Second program *)
A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]];
Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
-
def A168622(n,k):
if k==0 or k==n: return 1
else: return 7*binomial(n,k)
print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025
A182208
Carmichael numbers divisible by 7.
Original entry on oeis.org
1729, 2821, 6601, 8911, 15841, 41041, 52633, 63973, 101101, 126217, 172081, 188461, 670033, 748657, 825265, 838201, 997633, 1033669, 1082809, 1773289, 2628073, 4463641, 4909177, 6840001, 7995169, 8719921, 8830801, 9585541, 9890881
Offset: 1
-
CarmichaelNbrQ[n_] := ! PrimeQ[n] && Mod[n, CarmichaelLambda@ n] == 1; 7 Select[ Range[2500000], CarmichaelNbrQ[ 7#] &] (* Robert G. Wilson v, Aug 24 2012 *)
-
Korselt(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
forstep(n=49,1e6,42,if(Korselt(n),print1(n", "))) \\ Charles R Greathouse IV, Oct 02 2012
A182341
List of positive integers whose prime tower factorization, as defined in comments, contains the prime 7.
Original entry on oeis.org
7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 128, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 371, 378
Offset: 1
-
# The integer n is in this sequence if and only if
# containsPrimeInTower(7, n) returns true
containsPrimeInTower:=proc(q, n) local i, L, currentExponent; option remember;
if n <= 1 then return false: end if;
if type(n/q, integer) then return true: end if;
L := ifactors(n)[2];
for i to nops(L) do currentExponent := L[i][2];
if containsPrimeInTower(q, currentExponent) then return true: end if
end do;
return false:
end proc:
-
containsPrimeInTower[q_, n_] := containsPrimeInTower[q, n] = Module[{i, L, currentExponent}, If[n <= 1, Return[False]]; If[IntegerQ[n/q], Return[True]]; L = FactorInteger[n]; For[i = 1, i <= Length[L] , i++, currentExponent = L[[i, 2]]; If[containsPrimeInTower[q, currentExponent], Return[True]]]; Return[False]];
Select[Range[400], containsPrimeInTower[7, #]&] (* Jean-François Alcover, Jan 22 2019, from Maple *)
A328947
Numbers formed from decimal digits 0 and/or 1 which are divisible by 7.
Original entry on oeis.org
0, 1001, 10010, 10101, 11011, 100100, 101010, 101101, 110110, 111111, 1000111, 1001000, 1010100, 1011010, 1011101, 1100001, 1101100, 1110011, 1111110, 10000011, 10001110, 10010000, 10011001, 10100111, 10101000, 10110100, 10111010, 10111101, 11000010, 11000101, 11001011, 11010111, 11011000
Offset: 1
a(3)=10010 is in the sequence because it is divisible by 7 and each of its decimal digits is 0 or 1.
-
a:=[]; f:=func; for k in [0..220] do if f(k) mod 7 eq 0 then Append(~a,f(k)); end if; end for; a; // Marius A. Burtea, Nov 01 2019
-
bintodec:= proc(n) local L,i; L:= convert(n,base,2); add(10^(i-1)*L[i],i=1..nops(L)) end proc:
select(t -> t mod 7 = 0, map(bintodec,[$0..1000]));
-
A328947_list = [n for n in (int(bin(m)[2:]) for m in range(10**4)) if not n % 7] # Chai Wah Wu, Nov 01 2019
A335774
Numbers k such that in prime factorization of k the second smallest factor is 7.
Original entry on oeis.org
14, 21, 28, 35, 56, 63, 98, 112, 147, 154, 175, 182, 189, 196, 224, 231, 238, 245, 266, 273, 308, 322, 357, 364, 385, 392, 399, 406, 434, 441, 448, 455, 476, 483, 518, 532, 567, 574, 595, 602, 609, 616, 644, 651, 658, 665, 686, 693, 728, 742, 777, 784, 805, 812, 819, 826, 854, 861
Offset: 1
14 = 2*7, 28 = 2*2*7, 35 = 5*7, 56 = 2^3*7, 63 = 3*3*7, 147 = 3*7*7, 154 = 2*7*11.
- Ray Chandler, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
A351663
Perfect powers that are divisible by 7.
Original entry on oeis.org
49, 196, 343, 441, 784, 1225, 1764, 2401, 2744, 3136, 3969, 4900, 5929, 7056, 8281, 9261, 9604, 11025, 12544, 14161, 15876, 16807, 17689, 19600, 21609, 21952, 23716, 25921, 28224, 30625, 33124, 35721, 38416, 41209, 42875, 44100, 47089, 50176, 53361, 56644
Offset: 1
196 is a term since 196 = (2*7)^2 is a power of a multiple of 7.
-
q:= n-> igcd(seq(i[2], i=ifactors(n)[2]))>1:
select(q, [49*i$i=1..2000])[]; # Alois P. Heinz, May 05 2022
-
Select[49*Range[1200], GCD @@ FactorInteger[#][[All, 2]] > 1 &]
-
isok(k) = ispower(k) && !(k % 7)
A362792
Numbers k such that 3*k and 7*k share the same set of digits.
Original entry on oeis.org
0, 45, 75, 423, 445, 450, 513, 750, 891, 1089, 1305, 2382, 2497, 4230, 4445, 4450, 4488, 4491, 4500, 4505, 4513, 4878, 5013, 5045, 5130, 5133, 5868, 7317, 7500, 7686, 8360, 8703, 8891, 8901, 8910, 8911, 8955, 8991, 9756, 9891, 10089, 10449, 10889, 10890, 10891
Offset: 1
k = 75 is a term because 3*k = 225 and 7*k = 525 share the same set of digits, namely {2,5}.
k = 423 is a term because 3*k = 1269 and 7*k = 2961 share the same set of digits, namely {1,2,6,9}.
-
Select[Range[0, 11000], Union[IntegerDigits[3*#]] == Union[IntegerDigits[7*#]] &] (* Amiram Eldar, May 18 2023 *)
-
isok(k) = Set(digits(3*k)) == Set(digits(7*k));
-
def ok(n): return set(str(3*n)) == set(str(7*n))
print([k for k in range(11000) if ok(k)]) # Michael S. Branicky, May 04 2023
A242570
a(n) = 252 * n.
Original entry on oeis.org
0, 252, 504, 756, 1008, 1260, 1512, 1764, 2016, 2268, 2520, 2772, 3024, 3276, 3528, 3780, 4032, 4284, 4536, 4788, 5040, 5292, 5544, 5796, 6048, 6300, 6552, 6804, 7056, 7308, 7560, 7812, 8064, 8316, 8568, 8820, 9072, 9324, 9576, 9828, 10080, 10332, 10584, 10836, 11088, 11340
Offset: 0
-
252*Range[0, 49] (* Alonso del Arte, May 17 2014 *)
LinearRecurrence[{2,-1},{0,252},50] (* Harvey P. Dale, Mar 25 2025 *)
-
for(n=0,50,print(252*n))
A336483
a(n) = floor(n/10) + (5 times last digit of n).
Original entry on oeis.org
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 7
Offset: 0
- L. E. Dickson, History of the theory of numbers. Vol. I: Divisibility and primality. Chelsea Publishing Co., New York 1966.
- D. B. Eperson, Puzzles, Pastimes, Problems, Mathematics in School Vol. 16, No. 5 (Nov., 1987), pp. 18-19, 34-35.
- OB360 Media, 12-year-old Nigerian Chika Ofili wins special award for discovering a new Mathematics formula, November 2019.
- Skeptics Stack Exchange, Is Chika Ofili's method for checking divisibility for 7 a “new discovery” in math?.
- A. Zbikowski, Note sur la divisibilité des nombres, Bull. Acad. Sci. St. Petersbourg 3 (1861) pp. 151-153.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
-
Table[Floor[n/10]+5Mod[n,10],{n,0,80}] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,5,10,15,20,25,30,35,40,45,1},80] (* Harvey P. Dale, Nov 01 2023 *)
-
a(n) = 5*(n % 10) + (n\10);
Comments