cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 81 results. Next

A166394 Multiples of 7 whose reversal - 1 is also a multiple of 7.

Original entry on oeis.org

63, 112, 119, 182, 189, 203, 273, 364, 455, 546, 630, 637, 721, 728, 791, 798, 812, 819, 882, 889, 903, 973, 1036, 1120, 1127, 1190, 1197, 1211, 1218, 1281, 1288, 1302, 1309, 1372, 1379, 1463, 1554, 1645, 1736, 1820, 1827, 1890, 1897, 1911, 1918, 1981, 1988
Offset: 1

Views

Author

Claudio Meller, Oct 13 2009

Keywords

Crossrefs

Subsequence of A008589.

Programs

  • Mathematica
    Select[7 Range[5!], Divisible[FromDigits[Reverse[IntegerDigits[#]]] - 1, 7] &] (* G. C. Greubel, May 12 2016 *)

A168622 Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1, 14,   1;
  1, 21,  21,   1;
  1, 28,  42,  28,    1;
  1, 35,  70,  70,   35,    1;
  1, 42, 105, 140,  105,   42,    1;
  1, 49, 147, 245,  245,  147,   49,   1;
  1, 56, 196, 392,  490,  392,  196,  56,   1;
  1, 63, 252, 588,  882,  882,  588, 252,  63,  1;
  1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
		

Crossrefs

Columns (essentially): A008589 (k=1), A024966 (k=2).

Programs

  • Magma
    A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >;
    [A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
    
  • Mathematica
    (* First program *)
    p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
    Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten
    (* Second program *)
    A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]];
    Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
  • SageMath
    def A168622(n,k):
        if k==0 or k==n: return 1
        else: return 7*binomial(n,k)
    print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025

Formula

From G. C. Greubel, Apr 10 2025: (Start)
T(n, k) = 7*binomial(n, k), with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 2*A048489(n-1) + 6*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = -6*(1 + (-1)^n) + 13*[n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022090(n+1) - 3*(3 + (-1)^n) + 6*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (14/sqrt(3))*(-1)^n*cos((4*n+1)*Pi/6) - 6*(1 + (-1)^n*cos(n*Pi/2)) + 6*[n=0]. (End)

A182208 Carmichael numbers divisible by 7.

Original entry on oeis.org

1729, 2821, 6601, 8911, 15841, 41041, 52633, 63973, 101101, 126217, 172081, 188461, 670033, 748657, 825265, 838201, 997633, 1033669, 1082809, 1773289, 2628073, 4463641, 4909177, 6840001, 7995169, 8719921, 8830801, 9585541, 9890881
Offset: 1

Views

Author

Marius Coman, Apr 18 2012

Keywords

Comments

Conjecture: Any Carmichael number C divisible by 7 can be written in one of two ways: (1) C=7*(6m+1)*(6n+1), where m and n are natural numbers or (2) C=7*(6m-1)*(6n-1), where m and n are natural numbers. In other words, there aren’t Carmichael numbers divisible by 7 of the form C=7*(6m+1)*(6n-1). Checked for the first 27 Carmichael numbers divisible by 7. Note: a Carmichael number with more than 3 prime divisors can be written (sometimes) in both ways: 41041 = 7*11*13*41 = 7*13*451 (form 1) = 7*11*533 = 7*41*143 (form 2).
Observation: in the first 100 Carmichael numbers with three prime divisors (not divisible by 3) there is no one to can be written as (6x+1)(6y+1)(6z-1), they are all of the form (6x+1)(6y+1)(6z+1), (6x-1)(6y-1)(6z-1) or (6x+1)(6y-1)(6z-1). Would not that be enough to make an assumption that there are no such Carmichael numbers with three prime divisors, or even more, that aren't Carmichael numbers even with more than three divisors to can be written this way?
The conjecture follows from Korselt's criterion. - Charles R Greathouse IV, Oct 02 2012

Crossrefs

Intersection of A002997 (Carmichael) and A008589 (multiples of 7). - Michel Marcus, Oct 11 2016

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ[n] && Mod[n, CarmichaelLambda@ n] == 1; 7 Select[ Range[2500000], CarmichaelNbrQ[ 7#] &] (* Robert G. Wilson v, Aug 24 2012 *)
  • PARI
    Korselt(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    forstep(n=49,1e6,42,if(Korselt(n),print1(n", "))) \\ Charles R Greathouse IV, Oct 02 2012

Extensions

Corrected by Robert G. Wilson v, Aug 24 2012

A182341 List of positive integers whose prime tower factorization, as defined in comments, contains the prime 7.

Original entry on oeis.org

7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 128, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 371, 378
Offset: 1

Views

Author

Patrick Devlin, Apr 25 2012

Keywords

Comments

The prime tower factorization of a number can be recursively defined as follows:
(0) The prime tower factorization of 1 is itself
(1) To find the prime tower factorization of an integer n>1, let n = p1^e1 * p2^e2 * ... * pk^ek be the usual prime factorization of n. Then the prime tower factorization is given by p1^(f1) * p2^(f2) * ... * pk^(fk), where fi is the prime tower factorization of ei.
Observation: the union of 128 and the first 54 nonzero multiples of 7 (cf. A008589) gives the first 55 terms of this sequence. - Omar E. Pol, Feb 01 2020

Crossrefs

Programs

  • Maple
    # The integer n is in this sequence if and only if
    # containsPrimeInTower(7, n) returns true
    containsPrimeInTower:=proc(q, n) local i, L, currentExponent; option remember;
    if n <= 1 then return false: end if;
    if type(n/q, integer) then return true: end if;
    L := ifactors(n)[2];
    for i to nops(L) do currentExponent := L[i][2];
    if containsPrimeInTower(q, currentExponent) then return true: end if
    end do;
    return false:
    end proc:
  • Mathematica
    containsPrimeInTower[q_, n_] := containsPrimeInTower[q, n] = Module[{i, L, currentExponent}, If[n <= 1, Return[False]]; If[IntegerQ[n/q], Return[True]]; L = FactorInteger[n]; For[i = 1, i <= Length[L] , i++, currentExponent = L[[i, 2]]; If[containsPrimeInTower[q, currentExponent], Return[True]]]; Return[False]];
    Select[Range[400], containsPrimeInTower[7, #]&] (* Jean-François Alcover, Jan 22 2019, from Maple *)

A328947 Numbers formed from decimal digits 0 and/or 1 which are divisible by 7.

Original entry on oeis.org

0, 1001, 10010, 10101, 11011, 100100, 101010, 101101, 110110, 111111, 1000111, 1001000, 1010100, 1011010, 1011101, 1100001, 1101100, 1110011, 1111110, 10000011, 10001110, 10010000, 10011001, 10100111, 10101000, 10110100, 10111010, 10111101, 11000010, 11000101, 11001011, 11010111, 11011000
Offset: 1

Views

Author

Robert Israel, Oct 31 2019

Keywords

Comments

If x and y are members of the sequence and 10^k > y, then 10^k*x+y is a member.
The number of terms of up to k digits is A263366(k-1).

Examples

			a(3)=10010 is in the sequence because it is divisible by 7 and each of its decimal digits is 0 or 1.
		

Crossrefs

Intersection of A007088 and A008589.
Cf. A263366.

Programs

  • Magma
    a:=[]; f:=func; for k in [0..220] do if f(k) mod 7 eq 0 then Append(~a,f(k)); end if; end for; a; // Marius A. Burtea, Nov 01 2019
    
  • Maple
    bintodec:= proc(n) local L,i; L:= convert(n,base,2); add(10^(i-1)*L[i],i=1..nops(L)) end proc:
    select(t -> t mod 7 = 0, map(bintodec,[$0..1000]));
  • Python
    A328947_list = [n for n in (int(bin(m)[2:]) for m in range(10**4)) if not n % 7] # Chai Wah Wu, Nov 01 2019

A335774 Numbers k such that in prime factorization of k the second smallest factor is 7.

Original entry on oeis.org

14, 21, 28, 35, 56, 63, 98, 112, 147, 154, 175, 182, 189, 196, 224, 231, 238, 245, 266, 273, 308, 322, 357, 364, 385, 392, 399, 406, 434, 441, 448, 455, 476, 483, 518, 532, 567, 574, 595, 602, 609, 616, 644, 651, 658, 665, 686, 693, 728, 742, 777, 784, 805, 812, 819, 826, 854, 861
Offset: 1

Views

Author

Zak Seidov, Jun 22 2020

Keywords

Comments

Trivially, all terms are multiples of 7. Also terms are divisible by 2 or 3 or 5, and by any number of primes > 7.

Examples

			14 = 2*7, 28 = 2*2*7, 35 = 5*7, 56 = 2^3*7, 63 = 3*3*7, 147 = 3*7*7, 154 = 2*7*11.
		

Crossrefs

Cf. A008589 (multiples of 7).
Subsequence of A080671.

Programs

  • Mathematica
    Select[Range[14, 1000], 1 < Length[fi = FactorInteger[#]] && 7 == fi[[2, 1]] &]

A351663 Perfect powers that are divisible by 7.

Original entry on oeis.org

49, 196, 343, 441, 784, 1225, 1764, 2401, 2744, 3136, 3969, 4900, 5929, 7056, 8281, 9261, 9604, 11025, 12544, 14161, 15876, 16807, 17689, 19600, 21609, 21952, 23716, 25921, 28224, 30625, 33124, 35721, 38416, 41209, 42875, 44100, 47089, 50176, 53361, 56644
Offset: 1

Views

Author

Marco Ripà, May 04 2022

Keywords

Comments

Terms are multiples of 49, since no perfect power divisible by 7 can have a 7-adic valuation below 2.

Examples

			196 is a term since 196 = (2*7)^2 is a power of a multiple of 7.
		

Crossrefs

Intersection of A001597 and A008589.
Other perfect powers: A075090, A075109, A353238, A353152.

Programs

  • Maple
    q:= n-> igcd(seq(i[2], i=ifactors(n)[2]))>1:
    select(q, [49*i$i=1..2000])[];  # Alois P. Heinz, May 05 2022
  • Mathematica
    Select[49*Range[1200], GCD @@ FactorInteger[#][[All, 2]] > 1 &]
  • PARI
    isok(k) = ispower(k) && !(k % 7)

Formula

a(n) has the form (7*m)^k for some m > 0 and k > 1.
Sum_{n>=1} 1/a(n) = -Sum_{k>=2} mu(k)*zeta(k)/7^k = 0.0371288923... - Amiram Eldar, Jul 02 2022

A362792 Numbers k such that 3*k and 7*k share the same set of digits.

Original entry on oeis.org

0, 45, 75, 423, 445, 450, 513, 750, 891, 1089, 1305, 2382, 2497, 4230, 4445, 4450, 4488, 4491, 4500, 4505, 4513, 4878, 5013, 5045, 5130, 5133, 5868, 7317, 7500, 7686, 8360, 8703, 8891, 8901, 8910, 8911, 8955, 8991, 9756, 9891, 10089, 10449, 10889, 10890, 10891
Offset: 1

Views

Author

Alexandru Petrescu, May 04 2023

Keywords

Comments

The sequence is infinite because if k is a term, then 10*k is also a term.
Every number k of the form 44...45 (one of more 4's followed by 5, cf. A093140) is a term because 3*k = 133...35 and 7*k = 311...15.

Examples

			k = 75 is a term because 3*k = 225 and 7*k = 525 share the same set of digits, namely {2,5}.
k = 423 is a term because 3*k = 1269 and 7*k = 2961 share the same set of digits, namely {1,2,6,9}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 11000], Union[IntegerDigits[3*#]] == Union[IntegerDigits[7*#]] &] (* Amiram Eldar, May 18 2023 *)
  • PARI
    isok(k) = Set(digits(3*k)) == Set(digits(7*k));
    
  • Python
    def ok(n): return set(str(3*n)) == set(str(7*n))
    print([k for k in range(11000) if ok(k)]) # Michael S. Branicky, May 04 2023

A242570 a(n) = 252 * n.

Original entry on oeis.org

0, 252, 504, 756, 1008, 1260, 1512, 1764, 2016, 2268, 2520, 2772, 3024, 3276, 3528, 3780, 4032, 4284, 4536, 4788, 5040, 5292, 5544, 5796, 6048, 6300, 6552, 6804, 7056, 7308, 7560, 7812, 8064, 8316, 8568, 8820, 9072, 9324, 9576, 9828, 10080, 10332, 10584, 10836, 11088, 11340
Offset: 0

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

As lcm(1,2,3,...,9) = 2520, 10*a(n) + k is divisible by each k from 1 through 9.

Crossrefs

Programs

  • Mathematica
    252*Range[0, 49] (* Alonso del Arte, May 17 2014 *)
    LinearRecurrence[{2,-1},{0,252},50] (* Harvey P. Dale, Mar 25 2025 *)
  • PARI
    for(n=0,50,print(252*n))

Formula

From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 252*x/(x-1)^2.
E.g.f.: 252*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 7*A044102(n) = 9*A135628(n) = 12*A008603(n) = 14*A008600(n) = 18*A008596(n) = 21*A008594(n) = 28*A008591(n) = 36*A008589(n) = 252*A001477(n). (End)

A336483 a(n) = floor(n/10) + (5 times last digit of n).

Original entry on oeis.org

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 7
Offset: 0

Views

Author

Michel Marcus, Aug 11 2020

Keywords

Comments

If the resulting number is divisible by 7, then n is divisible by 7; (re)discovered by 12-year-old Nigerian Chika Ofili.

References

  • L. E. Dickson, History of the theory of numbers. Vol. I: Divisibility and primality. Chelsea Publishing Co., New York 1966.

Crossrefs

Programs

  • Mathematica
    Table[Floor[n/10]+5Mod[n,10],{n,0,80}] (* or  *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,5,10,15,20,25,30,35,40,45,1},80] (* Harvey P. Dale, Nov 01 2023 *)
  • PARI
    a(n) = 5*(n % 10) + (n\10);

Formula

From Stefano Spezia, Aug 11 2020: (Start)
O.g.f.: x*(5 + 5*x + 5*x^2 + 5*x^3 + 5*x^4 + 5*x^5 + 5*x^6 + 5*x^7 + 5*x^8 - 44*x^9)/(1 - x - x^10 + x^11).
a(n) = a(n-1) + a(n-10) - a(n-11) for n > 10. (End)
Previous Showing 71-80 of 81 results. Next