cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A319073 Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 2, 4, 6, 3, 7, 8, 9, 4, 6, 14, 12, 12, 5, 12, 12, 21, 16, 15, 6, 8, 24, 18, 28, 20, 18, 7, 15, 16, 36, 24, 35, 24, 21, 8, 13, 30, 24, 48, 30, 42, 28, 24, 9, 18, 26, 45, 32, 60, 36, 49, 32, 27, 10, 12, 36, 39, 60, 40, 72, 42, 56, 36, 30, 11, 28, 24, 54, 52, 75, 48, 84, 48, 63, 40, 33, 12
Offset: 1

Views

Author

Omar E. Pol, Sep 22 2018

Keywords

Examples

			The corner of the square array begins:
         A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528
A000027:       1,      2,      3,      4,      5,      6,      7,      8, ...
A008585:       3,      6,      9,     12,     15,     18,     21,     24, ...
A008586:       4,      8,     12,     16,     20,     24,     28,     32, ...
A008589:       7,     14,     21,     28,     35,     42,     49,     56, ...
A008588:       6,     12,     18,     24,     30,     36,     42,     48, ...
A008594:      12,     24,     36,     48,     60,     72,     84,     96, ...
A008590:       8,     16,     24,     32,     40,     48,     56,     64, ...
A008597:      15,     30,     45,     60,     75,     90,    105,    120, ...
A008595:      13,     26,     39,     52,     65,     78,     91,    104, ...
A008600:      18,     36,     54,     72,     90,    108,    126,    144, ...
...
		

Crossrefs

Another version of A274824.
Antidiagonal sums give A175254.
Main diagonal gives A064987.
Row n lists the multiples of A000203(n).
Row 1 is A000027.
Initial zeros should be omitted in the following sequences related to the rows of the array:
Rows 6 and 11: A008594.
Rows 7-9: A008590, A008597, A008595.
Rows 10 and 17: A008600.
Rows 12-13: A135628, A008596.
Rows 14, 15 and 23: A008606.
Rows 16 and 25: A135631.
(Note that in the OEIS there are many other sequences that are also rows of this square array.)

Programs

  • GAP
    T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # Muniru A Asiru, Jan 01 2019
  • Maple
    with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)

A158186 a(n) = 10*n^2 - 7*n + 1.

Original entry on oeis.org

1, 4, 27, 70, 133, 216, 319, 442, 585, 748, 931, 1134, 1357, 1600, 1863, 2146, 2449, 2772, 3115, 3478, 3861, 4264, 4687, 5130, 5593, 6076, 6579, 7102, 7645, 8208, 8791, 9394, 10017, 10660, 11323, 12006, 12709, 13432, 14175, 14938, 15721, 16524, 17347
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 13 2009

Keywords

Comments

Sequence found by reading the segment (1, 4) together with the line (one of the diagonal axes) from 4, in the direction 4, 27, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011

Crossrefs

Programs

  • Mathematica
    Table[10n^2-7n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,4,27},50] (* Harvey P. Dale, Apr 06 2020 *)
  • PARI
    a(n)=10*n^2-7*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (2*n-1)*(5*n-1).
a(n) = A033571(n) - A008596(n) = A010010(n) - A033571(n).
G.f.: (1+x+18*x^2)/(1-x)^3. - Jaume Oliver Lafont, Mar 27 2009
a(n) = a(n-1) + 20*n - 17 (with a(0)=1). - Vincenzo Librandi, Dec 03 2010
Sum_{n>=0} 1/a(n) = 1 + (2*sqrt(1+2/sqrt(5))*Pi - 2*sqrt(5)*log(phi) - 5*log(5) + 8*log(2))/12, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 22 2022

Extensions

Typo in definition corrected by Reinhard Zumkeller, Dec 03 2009

A153432 Numbers m such that all ten numbers 10^k*m+1; k=0,1,...,9 are prime.

Original entry on oeis.org

15538734736, 28034367522, 41221375552, 89468493268, 92220460962, 95951017078, 105627706800, 108012908976, 147689513538, 161055865908, 177073756566, 181921823202, 185137153012, 192336309046, 212463686778
Offset: 1

Views

Author

Farideh Firoozbakht, Mar 31 2009

Keywords

Comments

If m & n are in the sequence, k<10 and r=m*n*10^k -1 is prime then r has at least k+1 representations of the form p*q-(p+q)where p & q are prime.

Crossrefs

Subsequence of A006093 and of A008596.

Formula

a(n) >> n log^10 n. - Charles R Greathouse IV, Dec 29 2024

A169825 Multiples of 420.

Original entry on oeis.org

0, 420, 840, 1260, 1680, 2100, 2520, 2940, 3360, 3780, 4200, 4620, 5040, 5460, 5880, 6300, 6720, 7140, 7560, 7980, 8400, 8820, 9240, 9660, 10080, 10500, 10920, 11340, 11760, 12180, 12600, 13020, 13440, 13860, 14280, 14700, 15120, 15540, 15960, 16380, 16800
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2010

Keywords

Comments

Numbers that are divisible by all of 1,2,3,4,5,6,7.

Crossrefs

Programs

Formula

a(n) = 420*n. - Wesley Ivan Hurt, Apr 11 2021
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 420*x/(x-1)^2.
E.g.f.: 420*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 7*A169823(n) = 14*A249674(n) = 15*A135628(n) = 20*A008603(n) = 21*A008602(n) = 28*A008597(n) = 30*A008596(n) = 60*A008589(n) = 420*A001477(n) = A169827(n)/2. (End)

A169827 Multiples of 840.

Original entry on oeis.org

0, 840, 1680, 2520, 3360, 4200, 5040, 5880, 6720, 7560, 8400, 9240, 10080, 10920, 11760, 12600, 13440, 14280, 15120, 15960, 16800, 17640, 18480, 19320, 20160, 21000, 21840, 22680, 23520, 24360, 25200, 26040, 26880, 27720, 28560, 29400, 30240, 31080, 31920
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2010

Keywords

Comments

Numbers that are divisible by all of 1,2,3,4,5,6,7,8.

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 840*x/(x-1)^2.
E.g.f.: 840*x*exp(x).
a(n) = 840*n = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*A169825(n) = 14*A169823(n) = 21*A317095(n) = 28*A249674(n) = 30*A135628(n) = 40*A008603(n) = 60*A008596(n) = 420*A005843(n) = 840*A001477(n). (End)

A179849 Sum of prime p and next prime after p is divisible by 7.

Original entry on oeis.org

19, 41, 53, 103, 151, 211, 229, 263, 313, 397, 419, 439, 461, 479, 523, 557, 571, 709, 859, 881, 919, 977, 983, 991, 1033, 1049, 1069, 1091, 1103, 1109, 1117, 1171, 1187, 1193, 1279, 1301, 1327, 1427, 1447, 1453, 1489, 1499, 1571, 1621, 1709, 1721, 1747
Offset: 1

Views

Author

Zak Seidov, Jan 10 2011

Keywords

Comments

Also primes p such that the sum of p and next prime after p is a multiple of 14, since for p > 2 the sum of two consecutive primes is even. - Klaus Brockhaus, Jan 11 2011

Examples

			p=19, q=23, p+q=42=7*6=14*3; p=41, q=43, p+q=84=7*12=14*6.
		

Crossrefs

Cf. A031932 (lower prime of a difference of 14 between consecutive primes), A008596 (multiples of 14).

Programs

  • Magma
    IsA179849:=func< n | IsPrime(n) and (n+NextPrime(n)) mod 14 eq 0 >; [ p: p in PrimesUpTo(2000) | IsA179849(p) ]; // Klaus Brockhaus, Jan 11 2011
  • Mathematica
    fQ[n_] := Block[{q = NextPrime@ n}, Mod[n + q, 7] == 0]; Select[ Prime@ Range@ 300, fQ]
  • PARI
    {q=3;for(n=1,100,p=q;q=nextprime(p+1);(p+q)%7==0&print(p))}
    

A358053 a(n) = 14*n - 1.

Original entry on oeis.org

13, 27, 41, 55, 69, 83, 97, 111, 125, 139, 153, 167, 181, 195, 209, 223, 237, 251, 265, 279, 293, 307, 321, 335, 349, 363, 377, 391, 405, 419, 433, 447, 461, 475, 489, 503, 517, 531, 545, 559, 573, 587, 601, 615, 629, 643, 657, 671, 685, 699, 713, 727, 741, 755, 769, 783, 797
Offset: 1

Views

Author

Leo Tavares, Oct 27 2022

Keywords

Comments

This sequence can be illustrated by a star outline with a central row of counters.
Subsequence of primes is A045473. - Bernard Schott, Jan 25 2023

Crossrefs

Programs

  • Mathematica
    14*Range[100] - 1 (* Paolo Xausa, Oct 04 2024 *)

Formula

a(n) = 14*n - 1.
a(n) = A003154(n+1) - A202804(n-1).
a(n) = A003154(n+1) - 2*A045944(n-1).
From Elmo R. Oliveira, Apr 03 2025: (Start)
G.f.: x*(13 + x)/(x - 1)^2.
E.g.f.: exp(x)*(14*x - 1) + 1.
a(n) = A017053(2*n-1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

A233207 Triangle T(n,k), read by rows, given by T(n+k,k)=2*k*(2*n+1).

Original entry on oeis.org

0, 0, 2, 0, 6, 4, 0, 10, 12, 6, 0, 14, 20, 18, 8, 0, 18, 28, 30, 24, 10, 0, 22, 36, 42, 40, 30, 12, 0, 26, 44, 54, 56, 50, 36, 14, 0, 30, 52, 66, 72, 70, 60, 42, 16, 0, 34, 60, 78, 88, 90, 84, 70, 48, 18, 0, 38, 68, 90, 104, 110, 108, 98, 80, 54, 20, 0, 42, 76, 102
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2013

Keywords

Comments

Row sums are A006331(n).
Diagonal sums are A212964(n+1).
T(2n,n)=A002943(n).

Examples

			Triangle begins:
  0
  0, 2
  0, 6, 4
  0, 10, 12, 6
  0, 14, 20, 18, 8
  0, 18, 28, 30, 24, 10
		

Crossrefs

Formula

T(n+k,k) = A005843(k)*A005408(n).
Sum_{k=0..n} T(n,k) = n*(n+1)*(2*n+1)/3 = A006331(n).

A242570 a(n) = 252 * n.

Original entry on oeis.org

0, 252, 504, 756, 1008, 1260, 1512, 1764, 2016, 2268, 2520, 2772, 3024, 3276, 3528, 3780, 4032, 4284, 4536, 4788, 5040, 5292, 5544, 5796, 6048, 6300, 6552, 6804, 7056, 7308, 7560, 7812, 8064, 8316, 8568, 8820, 9072, 9324, 9576, 9828, 10080, 10332, 10584, 10836, 11088, 11340
Offset: 0

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

As lcm(1,2,3,...,9) = 2520, 10*a(n) + k is divisible by each k from 1 through 9.

Crossrefs

Programs

  • Mathematica
    252*Range[0, 49] (* Alonso del Arte, May 17 2014 *)
    LinearRecurrence[{2,-1},{0,252},50] (* Harvey P. Dale, Mar 25 2025 *)
  • PARI
    for(n=0,50,print(252*n))

Formula

From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 252*x/(x-1)^2.
E.g.f.: 252*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 7*A044102(n) = 9*A135628(n) = 12*A008603(n) = 14*A008600(n) = 18*A008596(n) = 21*A008594(n) = 28*A008591(n) = 36*A008589(n) = 252*A001477(n). (End)
Previous Showing 11-19 of 19 results.