A319073
Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 2, 4, 6, 3, 7, 8, 9, 4, 6, 14, 12, 12, 5, 12, 12, 21, 16, 15, 6, 8, 24, 18, 28, 20, 18, 7, 15, 16, 36, 24, 35, 24, 21, 8, 13, 30, 24, 48, 30, 42, 28, 24, 9, 18, 26, 45, 32, 60, 36, 49, 32, 27, 10, 12, 36, 39, 60, 40, 72, 42, 56, 36, 30, 11, 28, 24, 54, 52, 75, 48, 84, 48, 63, 40, 33, 12
Offset: 1
The corner of the square array begins:
A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528
A000027: 1, 2, 3, 4, 5, 6, 7, 8, ...
A008585: 3, 6, 9, 12, 15, 18, 21, 24, ...
A008586: 4, 8, 12, 16, 20, 24, 28, 32, ...
A008589: 7, 14, 21, 28, 35, 42, 49, 56, ...
A008588: 6, 12, 18, 24, 30, 36, 42, 48, ...
A008594: 12, 24, 36, 48, 60, 72, 84, 96, ...
A008590: 8, 16, 24, 32, 40, 48, 56, 64, ...
A008597: 15, 30, 45, 60, 75, 90, 105, 120, ...
A008595: 13, 26, 39, 52, 65, 78, 91, 104, ...
A008600: 18, 36, 54, 72, 90, 108, 126, 144, ...
...
Row n lists the multiples of
A000203(n).
Initial zeros should be omitted in the following sequences related to the rows of the array:
(Note that in the OEIS there are many other sequences that are also rows of this square array.)
-
T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # Muniru A Asiru, Jan 01 2019
-
with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # Muniru A Asiru, Jan 01 2019
-
Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)
A158186
a(n) = 10*n^2 - 7*n + 1.
Original entry on oeis.org
1, 4, 27, 70, 133, 216, 319, 442, 585, 748, 931, 1134, 1357, 1600, 1863, 2146, 2449, 2772, 3115, 3478, 3861, 4264, 4687, 5130, 5593, 6076, 6579, 7102, 7645, 8208, 8791, 9394, 10017, 10660, 11323, 12006, 12709, 13432, 14175, 14938, 15721, 16524, 17347
Offset: 0
-
Table[10n^2-7n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,4,27},50] (* Harvey P. Dale, Apr 06 2020 *)
-
a(n)=10*n^2-7*n+1 \\ Charles R Greathouse IV, Jun 17 2017
A153432
Numbers m such that all ten numbers 10^k*m+1; k=0,1,...,9 are prime.
Original entry on oeis.org
15538734736, 28034367522, 41221375552, 89468493268, 92220460962, 95951017078, 105627706800, 108012908976, 147689513538, 161055865908, 177073756566, 181921823202, 185137153012, 192336309046, 212463686778
Offset: 1
A169825
Multiples of 420.
Original entry on oeis.org
0, 420, 840, 1260, 1680, 2100, 2520, 2940, 3360, 3780, 4200, 4620, 5040, 5460, 5880, 6300, 6720, 7140, 7560, 7980, 8400, 8820, 9240, 9660, 10080, 10500, 10920, 11340, 11760, 12180, 12600, 13020, 13440, 13860, 14280, 14700, 15120, 15540, 15960, 16380, 16800
Offset: 0
A169827
Multiples of 840.
Original entry on oeis.org
0, 840, 1680, 2520, 3360, 4200, 5040, 5880, 6720, 7560, 8400, 9240, 10080, 10920, 11760, 12600, 13440, 14280, 15120, 15960, 16800, 17640, 18480, 19320, 20160, 21000, 21840, 22680, 23520, 24360, 25200, 26040, 26880, 27720, 28560, 29400, 30240, 31080, 31920
Offset: 0
A179849
Sum of prime p and next prime after p is divisible by 7.
Original entry on oeis.org
19, 41, 53, 103, 151, 211, 229, 263, 313, 397, 419, 439, 461, 479, 523, 557, 571, 709, 859, 881, 919, 977, 983, 991, 1033, 1049, 1069, 1091, 1103, 1109, 1117, 1171, 1187, 1193, 1279, 1301, 1327, 1427, 1447, 1453, 1489, 1499, 1571, 1621, 1709, 1721, 1747
Offset: 1
p=19, q=23, p+q=42=7*6=14*3; p=41, q=43, p+q=84=7*12=14*6.
Cf.
A031932 (lower prime of a difference of 14 between consecutive primes),
A008596 (multiples of 14).
-
IsA179849:=func< n | IsPrime(n) and (n+NextPrime(n)) mod 14 eq 0 >; [ p: p in PrimesUpTo(2000) | IsA179849(p) ]; // Klaus Brockhaus, Jan 11 2011
-
fQ[n_] := Block[{q = NextPrime@ n}, Mod[n + q, 7] == 0]; Select[ Prime@ Range@ 300, fQ]
-
{q=3;for(n=1,100,p=q;q=nextprime(p+1);(p+q)%7==0&print(p))}
A358053
a(n) = 14*n - 1.
Original entry on oeis.org
13, 27, 41, 55, 69, 83, 97, 111, 125, 139, 153, 167, 181, 195, 209, 223, 237, 251, 265, 279, 293, 307, 321, 335, 349, 363, 377, 391, 405, 419, 433, 447, 461, 475, 489, 503, 517, 531, 545, 559, 573, 587, 601, 615, 629, 643, 657, 671, 685, 699, 713, 727, 741, 755, 769, 783, 797
Offset: 1
A233207
Triangle T(n,k), read by rows, given by T(n+k,k)=2*k*(2*n+1).
Original entry on oeis.org
0, 0, 2, 0, 6, 4, 0, 10, 12, 6, 0, 14, 20, 18, 8, 0, 18, 28, 30, 24, 10, 0, 22, 36, 42, 40, 30, 12, 0, 26, 44, 54, 56, 50, 36, 14, 0, 30, 52, 66, 72, 70, 60, 42, 16, 0, 34, 60, 78, 88, 90, 84, 70, 48, 18, 0, 38, 68, 90, 104, 110, 108, 98, 80, 54, 20, 0, 42, 76, 102
Offset: 0
Triangle begins:
0
0, 2
0, 6, 4
0, 10, 12, 6
0, 14, 20, 18, 8
0, 18, 28, 30, 24, 10
A242570
a(n) = 252 * n.
Original entry on oeis.org
0, 252, 504, 756, 1008, 1260, 1512, 1764, 2016, 2268, 2520, 2772, 3024, 3276, 3528, 3780, 4032, 4284, 4536, 4788, 5040, 5292, 5544, 5796, 6048, 6300, 6552, 6804, 7056, 7308, 7560, 7812, 8064, 8316, 8568, 8820, 9072, 9324, 9576, 9828, 10080, 10332, 10584, 10836, 11088, 11340
Offset: 0
-
252*Range[0, 49] (* Alonso del Arte, May 17 2014 *)
LinearRecurrence[{2,-1},{0,252},50] (* Harvey P. Dale, Mar 25 2025 *)
-
for(n=0,50,print(252*n))
Comments