A008790
a(n) = n^(n+4).
Original entry on oeis.org
0, 1, 64, 2187, 65536, 1953125, 60466176, 1977326743, 68719476736, 2541865828329, 100000000000000, 4177248169415651, 184884258895036416, 8650415919381337933, 426878854210636742656, 22168378200531005859375
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008791.
-
List([0..20], n-> n^(n+4)); # G. C. Greubel, Sep 11 2019
-
[n^(n+4): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:=n->mul(n,k=-3..n):seq(a(n),n=0..20); # Zerinvary Lajos, Jan 26 2008
-
Table[n^(n+4),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+3)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+4) for n in (0..20)] # G. C. Greubel, Sep 11 2019
Original entry on oeis.org
1, 2, 3, 6, 22, 147, 1443, 18250, 280394, 5063363, 105063363, 2463011054, 64380375278, 1856540769315, 58550453144611, 2004745521503986, 74062339559431922, 2936485391069247715, 124376016487663499491
Offset: 0
a(19) = 1 + 1 + 1 + 3 + 16 + 125 + 1296 + 16807 + 262144 + 4782969 + 100000000 + 2357947691 + 61917364224 + 1792160394037 + 56693912375296 + 1946195068359375 + 72057594037927936 + 2862423051509815793 + 121439531096594251776 + 5480386857784802185939.
Cf.
A000055,
A000169,
A000312,
A007778,
A007830,
A008785-
A008791,
A033842,
A000272,
A036361,
A036362,
A036506,
A000055,
A054581,
A097170
A301270
Number of labeled trees on n vertices containing two fixed non-adjacent edges.
Original entry on oeis.org
4, 20, 144, 1372, 16384, 236196, 4000000, 77948684, 1719926784, 42417997492, 1157018619904, 34599023437500, 1125899906842624, 39618312131623748, 1499253470328324096, 60724508119499193196, 2621440000000000000000, 120167769980326767578964, 5829995856912430117421056, 298461883710362842247633948, 16079954871362414694843285504
Offset: 4
The edges {1,2} and {3,4} can form a tree by being joined by an edge in four ways (two possibilities for each edge).
A364870
Array read by ascending antidiagonals: A(n, k) = (n + k)^n, with k >= 0.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 27, 9, 3, 1, 256, 64, 16, 4, 1, 3125, 625, 125, 25, 5, 1, 46656, 7776, 1296, 216, 36, 6, 1, 823543, 117649, 16807, 2401, 343, 49, 7, 1, 16777216, 2097152, 262144, 32768, 4096, 512, 64, 8, 1, 387420489, 43046721, 4782969, 531441, 59049, 6561, 729, 81, 9, 1
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
4, 9, 16, 25, 36, 49, ...
27, 64, 125, 216, 343, 512, ...
256, 625, 1296, 2401, 4096, 6561, ...
3125, 7776, 16807, 32768, 59049, 100000, ...
...
Cf.
A000012 (n=0),
A000169,
A000272,
A000312 (k=0),
A007830 (k=3),
A008785 (k=4),
A008786 (k=5),
A008787 (k=6),
A031973 (antidiagonal sums),
A052746 (2nd superdiagonal),
A052750,
A062971 (main diagonal),
A079901 (read by descending antidiagonals),
A085527 (1st superdiagonal),
A085528 (1st subdiagonal),
A085532,
A099753.
-
A[n_,k_]:=(n+k)^n; Join[{1},Table[A[n-k,k],{n,9},{k,0,n}]]//Flatten
Comments