A007778
a(n) = n^(n+1).
Original entry on oeis.org
0, 1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, 3486784401, 100000000000, 3138428376721, 106993205379072, 3937376385699289, 155568095557812224, 6568408355712890625, 295147905179352825856, 14063084452067724991009, 708235345355337676357632
Offset: 0
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 67.
Cf.
A000169,
A000272,
A000312,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008790,
A008791,
A135608.
-
[n^(n+1):n in [0..20]]; // Vincenzo Librandi, Jan 03 2012
-
seq( n^(n+1), n=0..20); # G. C. Greubel, Mar 05 2020
-
Table[n^(n+1), {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Oct 01 2008 *)
-
A007778[n]:=n^(n+1)$
makelist(A007778[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
vector(21, n, my(m=n-1); m^(m+1)) \\ G. C. Greubel, Mar 05 2020
-
[n^(n+1) for n in (0..20)] # G. C. Greubel, Mar 05 2020
A007830
a(n) = (n+3)^n.
Original entry on oeis.org
1, 4, 25, 216, 2401, 32768, 531441, 10000000, 214358881, 5159780352, 137858491849, 4049565169664, 129746337890625, 4503599627370496, 168377826559400929, 6746640616477458432, 288441413567621167681, 13107200000000000000000, 630880792396715529789561
Offset: 0
- M. Shapiro, B. Shapiro and A. Vainshtein - Ramified coverings of S^2 with one degenerate branching point and enumeration of edge-ordered graphs, Amer. Math. Soc. Transl., Vol. 180 (1997), pp. 219-227.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.27.
- T. D. Noe, Table of n, a(n) for n = 0..100
- Christian Brouder, William J. Keith, and Ângela Mestre, Closed forms for a multigraph enumeration, arXiv preprint arXiv:1301.0874 [math.CO], 2013-2015.
- P. J. Cameron, Two-graphs and Trees, Discrete Math. 127 (1994) 63-74.
- P. J. Cameron, Counting two-graphs related to trees, Elec. J. Combin., Vol. 2, #R4.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Vsevolod Gubarev, Rota-Baxter operators on a sum of fields, arXiv:1811.08219 [math.RA], 2018.
- Oleg Pikhurko, Generating Edge-Labeled Trees, American Math. Monthly, 112 (2005) 919-921.
- M. Shapiro, B. Shapiro and A. Vainshtein, Ramified coverings of S^2 with one degenerate branching point and enumeration of edge-ordered graphs, 1996.
- Index entries for sequences related to trees
-
[(n+3)^n: n in [0..20]]; // G. C. Greubel, Mar 06 2020
-
A007830:=n->(n+3)^n; seq(A007830(n), n=0..20);
T := -LambertW(-x): ser := series(exp(3*T)/(1-T), x, 20):
seq(n!*coeff(ser, x, n), n = 0..18); # Peter Luschny, Jan 20 2023
-
Table[(n+3)^n, {n, 0, 18}]
-
a(n)=(n+3)^n \\ Charles R Greathouse IV, Feb 06 2017
-
[(n+3)^n for n in (0..20)] # G. C. Greubel, Mar 06 2020
A008785
a(n) = (n+4)^n.
Original entry on oeis.org
1, 5, 36, 343, 4096, 59049, 1000000, 19487171, 429981696, 10604499373, 289254654976, 8649755859375, 281474976710656, 9904578032905937, 374813367582081024, 15181127029874798299, 655360000000000000000, 30041942495081691894741, 1457498964228107529355264
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008786,
A008787,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+4)^n); # G. C. Greubel, Sep 11 2019
-
[(n+4)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[(n+4)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+3)^(n-1)) \\ G. C. Greubel, Nov 09 2017
-
[(n+4)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008788
a(n) = n^(n+2).
Original entry on oeis.org
0, 1, 16, 243, 4096, 78125, 1679616, 40353607, 1073741824, 31381059609, 1000000000000, 34522712143931, 1283918464548864, 51185893014090757, 2177953337809371136, 98526125335693359375, 4722366482869645213696
Offset: 0
G.f. = x + 16*x^2 + 243*x^3 + 4096*x^4 + 78125*x^5 + 1679616*x^6 + ...
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008789,
A008790,
A008791.
-
List([0..20], n-> n^(n+2)); # G. C. Greubel, Sep 11 2019
-
[n^(n+2): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[n^(n+2), {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
CoefficientList[Series[LambertW[-x] * (2*LambertW[-x]-1) / (1 + LambertW[-x])^5, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 20 2014 *)
-
vector(20, n, (n-1)^(n+1)) \\ G. C. Greubel, Nov 14 2017
-
[n^(n+2) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008791
a(n) = n^(n+5).
Original entry on oeis.org
0, 1, 128, 6561, 262144, 9765625, 362797056, 13841287201, 549755813888, 22876792454961, 1000000000000000, 45949729863572161, 2218611106740436992, 112455406951957393129, 5976303958948914397184, 332525673007965087890625
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008790.
-
List([0..20], n-> n^(n+5)); # G. C. Greubel, Sep 11 2019
-
[n^(n+5): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:=n->mul( n, k=-4..n): seq(a(n), n=0..20); # Zerinvary Lajos, Jan 26 2008
-
Table[n^(n+5),{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+4)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+5) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008789
a(n) = n^(n+3).
Original entry on oeis.org
0, 1, 32, 729, 16384, 390625, 10077696, 282475249, 8589934592, 282429536481, 10000000000000, 379749833583241, 15407021574586368, 665416609183179841, 30491346729331195904, 1477891880035400390625, 75557863725914323419136
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008790,
A008791.
-
List([0..20], n-> n^(n+3)); # G. C. Greubel, Sep 11 2019
-
[n^(n+3): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
printlevel := -1; a := [0]; T := x->-LambertW(-x); f := series((T(x)*(1+8*T(x)+6*(T(x))^2)/(1-T(x))^7),x,24); for m from 1 to 23 do a := [op(a),op(2*m-1,f)*m! ] od; print(a); # Len Smiley, Nov 19 2001
-
Table[n^(n+3),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+2)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+3) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008786
a(n) = (n+5)^n.
Original entry on oeis.org
1, 6, 49, 512, 6561, 100000, 1771561, 35831808, 815730721, 20661046784, 576650390625, 17592186044416, 582622237229761, 20822964865671168, 799006685782884121, 32768000000000000000, 1430568690241985328321, 66249952919459433152512, 3244150909895248285300369
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785, this sequence,
A008787,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+5)^n); # G. C. Greubel, Sep 11 2019
-
[(n+5)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[(n+5)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+4)^(n-1)) \\ G. C. Greubel, Sep 11 2019
-
[(n+5)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008787
a(n) = (n + 6)^n.
Original entry on oeis.org
1, 7, 64, 729, 10000, 161051, 2985984, 62748517, 1475789056, 38443359375, 1099511627776, 34271896307633, 1156831381426176, 42052983462257059, 1638400000000000000, 68122318582951682301, 3011361496339065143296
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786, this sequence,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+6)^n); # G. C. Greubel, Sep 11 2019
-
[(n+6)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:= n-> (n+6)^n: seq(a(n), n=0..20);
-
Table[(n+6)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+5)^(n-1)) \\ G. C. Greubel, Sep 11 2019
-
[(n+6)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
Original entry on oeis.org
1, 256, 19683, 1048576, 48828125, 2176782336, 96889010407, 4398046511104, 205891132094649, 10000000000000000, 505447028499293771, 26623333280885243904, 1461920290375446110677, 83668255425284801560576
Offset: 1
Douglas Winston (douglas.winston(AT)srupc.com), Dec 13 2003
Showing 1-9 of 9 results.
Comments