A007778
a(n) = n^(n+1).
Original entry on oeis.org
0, 1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, 3486784401, 100000000000, 3138428376721, 106993205379072, 3937376385699289, 155568095557812224, 6568408355712890625, 295147905179352825856, 14063084452067724991009, 708235345355337676357632
Offset: 0
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 67.
Cf.
A000169,
A000272,
A000312,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008790,
A008791,
A135608.
-
[n^(n+1):n in [0..20]]; // Vincenzo Librandi, Jan 03 2012
-
seq( n^(n+1), n=0..20); # G. C. Greubel, Mar 05 2020
-
Table[n^(n+1), {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Oct 01 2008 *)
-
A007778[n]:=n^(n+1)$
makelist(A007778[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
vector(21, n, my(m=n-1); m^(m+1)) \\ G. C. Greubel, Mar 05 2020
-
[n^(n+1) for n in (0..20)] # G. C. Greubel, Mar 05 2020
A007830
a(n) = (n+3)^n.
Original entry on oeis.org
1, 4, 25, 216, 2401, 32768, 531441, 10000000, 214358881, 5159780352, 137858491849, 4049565169664, 129746337890625, 4503599627370496, 168377826559400929, 6746640616477458432, 288441413567621167681, 13107200000000000000000, 630880792396715529789561
Offset: 0
- M. Shapiro, B. Shapiro and A. Vainshtein - Ramified coverings of S^2 with one degenerate branching point and enumeration of edge-ordered graphs, Amer. Math. Soc. Transl., Vol. 180 (1997), pp. 219-227.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.27.
- T. D. Noe, Table of n, a(n) for n = 0..100
- Christian Brouder, William J. Keith, and Ângela Mestre, Closed forms for a multigraph enumeration, arXiv preprint arXiv:1301.0874 [math.CO], 2013-2015.
- P. J. Cameron, Two-graphs and Trees, Discrete Math. 127 (1994) 63-74.
- P. J. Cameron, Counting two-graphs related to trees, Elec. J. Combin., Vol. 2, #R4.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Vsevolod Gubarev, Rota-Baxter operators on a sum of fields, arXiv:1811.08219 [math.RA], 2018.
- Oleg Pikhurko, Generating Edge-Labeled Trees, American Math. Monthly, 112 (2005) 919-921.
- M. Shapiro, B. Shapiro and A. Vainshtein, Ramified coverings of S^2 with one degenerate branching point and enumeration of edge-ordered graphs, 1996.
- Index entries for sequences related to trees
-
[(n+3)^n: n in [0..20]]; // G. C. Greubel, Mar 06 2020
-
A007830:=n->(n+3)^n; seq(A007830(n), n=0..20);
T := -LambertW(-x): ser := series(exp(3*T)/(1-T), x, 20):
seq(n!*coeff(ser, x, n), n = 0..18); # Peter Luschny, Jan 20 2023
-
Table[(n+3)^n, {n, 0, 18}]
-
a(n)=(n+3)^n \\ Charles R Greathouse IV, Feb 06 2017
-
[(n+3)^n for n in (0..20)] # G. C. Greubel, Mar 06 2020
A008785
a(n) = (n+4)^n.
Original entry on oeis.org
1, 5, 36, 343, 4096, 59049, 1000000, 19487171, 429981696, 10604499373, 289254654976, 8649755859375, 281474976710656, 9904578032905937, 374813367582081024, 15181127029874798299, 655360000000000000000, 30041942495081691894741, 1457498964228107529355264
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008786,
A008787,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+4)^n); # G. C. Greubel, Sep 11 2019
-
[(n+4)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[(n+4)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+3)^(n-1)) \\ G. C. Greubel, Nov 09 2017
-
[(n+4)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008788
a(n) = n^(n+2).
Original entry on oeis.org
0, 1, 16, 243, 4096, 78125, 1679616, 40353607, 1073741824, 31381059609, 1000000000000, 34522712143931, 1283918464548864, 51185893014090757, 2177953337809371136, 98526125335693359375, 4722366482869645213696
Offset: 0
G.f. = x + 16*x^2 + 243*x^3 + 4096*x^4 + 78125*x^5 + 1679616*x^6 + ...
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008789,
A008790,
A008791.
-
List([0..20], n-> n^(n+2)); # G. C. Greubel, Sep 11 2019
-
[n^(n+2): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[n^(n+2), {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
CoefficientList[Series[LambertW[-x] * (2*LambertW[-x]-1) / (1 + LambertW[-x])^5, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 20 2014 *)
-
vector(20, n, (n-1)^(n+1)) \\ G. C. Greubel, Nov 14 2017
-
[n^(n+2) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008791
a(n) = n^(n+5).
Original entry on oeis.org
0, 1, 128, 6561, 262144, 9765625, 362797056, 13841287201, 549755813888, 22876792454961, 1000000000000000, 45949729863572161, 2218611106740436992, 112455406951957393129, 5976303958948914397184, 332525673007965087890625
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008790.
-
List([0..20], n-> n^(n+5)); # G. C. Greubel, Sep 11 2019
-
[n^(n+5): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:=n->mul( n, k=-4..n): seq(a(n), n=0..20); # Zerinvary Lajos, Jan 26 2008
-
Table[n^(n+5),{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+4)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+5) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008789
a(n) = n^(n+3).
Original entry on oeis.org
0, 1, 32, 729, 16384, 390625, 10077696, 282475249, 8589934592, 282429536481, 10000000000000, 379749833583241, 15407021574586368, 665416609183179841, 30491346729331195904, 1477891880035400390625, 75557863725914323419136
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008790,
A008791.
-
List([0..20], n-> n^(n+3)); # G. C. Greubel, Sep 11 2019
-
[n^(n+3): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
printlevel := -1; a := [0]; T := x->-LambertW(-x); f := series((T(x)*(1+8*T(x)+6*(T(x))^2)/(1-T(x))^7),x,24); for m from 1 to 23 do a := [op(a),op(2*m-1,f)*m! ] od; print(a); # Len Smiley, Nov 19 2001
-
Table[n^(n+3),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+2)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+3) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008787
a(n) = (n + 6)^n.
Original entry on oeis.org
1, 7, 64, 729, 10000, 161051, 2985984, 62748517, 1475789056, 38443359375, 1099511627776, 34271896307633, 1156831381426176, 42052983462257059, 1638400000000000000, 68122318582951682301, 3011361496339065143296
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786, this sequence,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+6)^n); # G. C. Greubel, Sep 11 2019
-
[(n+6)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:= n-> (n+6)^n: seq(a(n), n=0..20);
-
Table[(n+6)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+5)^(n-1)) \\ G. C. Greubel, Sep 11 2019
-
[(n+6)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008790
a(n) = n^(n+4).
Original entry on oeis.org
0, 1, 64, 2187, 65536, 1953125, 60466176, 1977326743, 68719476736, 2541865828329, 100000000000000, 4177248169415651, 184884258895036416, 8650415919381337933, 426878854210636742656, 22168378200531005859375
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008791.
-
List([0..20], n-> n^(n+4)); # G. C. Greubel, Sep 11 2019
-
[n^(n+4): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:=n->mul(n,k=-3..n):seq(a(n),n=0..20); # Zerinvary Lajos, Jan 26 2008
-
Table[n^(n+4),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+3)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+4) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A364870
Array read by ascending antidiagonals: A(n, k) = (n + k)^n, with k >= 0.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 27, 9, 3, 1, 256, 64, 16, 4, 1, 3125, 625, 125, 25, 5, 1, 46656, 7776, 1296, 216, 36, 6, 1, 823543, 117649, 16807, 2401, 343, 49, 7, 1, 16777216, 2097152, 262144, 32768, 4096, 512, 64, 8, 1, 387420489, 43046721, 4782969, 531441, 59049, 6561, 729, 81, 9, 1
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
4, 9, 16, 25, 36, 49, ...
27, 64, 125, 216, 343, 512, ...
256, 625, 1296, 2401, 4096, 6561, ...
3125, 7776, 16807, 32768, 59049, 100000, ...
...
Cf.
A000012 (n=0),
A000169,
A000272,
A000312 (k=0),
A007830 (k=3),
A008785 (k=4),
A008786 (k=5),
A008787 (k=6),
A031973 (antidiagonal sums),
A052746 (2nd superdiagonal),
A052750,
A062971 (main diagonal),
A079901 (read by descending antidiagonals),
A085527 (1st superdiagonal),
A085528 (1st subdiagonal),
A085532,
A099753.
-
A[n_,k_]:=(n+k)^n; Join[{1},Table[A[n-k,k],{n,9},{k,0,n}]]//Flatten
Showing 1-9 of 9 results.
Comments