cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A094178 Numbers n such that 4n+1 is divisible only by primes of form 4m+1 (i.e., by the Pythagorean primes A002144).

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 13, 15, 16, 18, 21, 22, 24, 25, 27, 28, 31, 34, 36, 37, 39, 42, 43, 45, 46, 48, 49, 51, 55, 57, 58, 60, 64, 66, 67, 69, 70, 72, 73, 76, 78, 79, 81, 84, 87, 88, 91, 93, 94, 97, 99, 100, 102, 105, 106, 108, 111, 112, 114, 115, 120, 121, 123, 126, 127
Offset: 1

Views

Author

Lekraj Beedassy, May 06 2004

Keywords

Comments

For the actual numbers 4n+1, see A008846(n).
Complement of A124934; A125203(a(n)) = 0; A000290 and A000217 are subsequences. - Reinhard Zumkeller, Nov 24 2006

Programs

  • Haskell
    import Data.List (elemIndices)
    a094178 n = a094178_list !! (n-1)
    a094178_list = map (+ 1) $ elemIndices 0 a125203_list
    -- Reinhard Zumkeller, Jan 02 2013

Extensions

More terms from Ray Chandler, Jun 20 2004

A120960 Pythagorean prime powers.

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 125, 137, 149, 157, 169, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 289, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593
Offset: 1

Views

Author

Lekraj Beedassy, Jul 19 2006

Keywords

Comments

1 + sum of the indices of the first two numbers in A001844 that are divisible by n, if 1 + the sum of those indices equals n. - Mats Granvik, Oct 16 2007
R. J. Turyn proved [Baliga, et al., p. 129, gives the reference] that Williamson Hadamard matrices exist for 4t = 2(p^k + 1), for all primes p such that p == 1 (mod 4). - L. Edson Jeffery, Apr 10 2012
A024362(a(n)) = 1. - Reinhard Zumkeller, Dec 02 2012

Examples

			A001844(1) = 5 is divisible by 5, A001844(3) = 25 is divisible by = 5 and 1+3+1=5, so 5 is a member.
A001844(2) = 13 is divisible by = 13, A001844(10) = 221 is divisible by = 13 and 2+10+1=13 so 13 is a member.
		

Crossrefs

Cf. Disjoint union of A002144 and A146945.
Cf. A001844, subsequence of A000961.
Cf. A024409, subsequence of A008846.

Programs

  • Excel
    Generate the indices with: =if(mod(1+2*row()*(row()+1);4*column()+1)=0;row();") Then sum the first two indices if it equals the column + 1. - Mats Granvik, Oct 16 2007
    
  • Haskell
    import Data.List (elemIndices)
    a120960 n = a120960_list !! (n-1)
    a120960_list = map (+ 1) $ elemIndices 1 a024362_list
    -- Reinhard Zumkeller, Dec 02 2012

A137409 Numbers that cannot be the value of 'C' in a primitive Pythagorean triple (A < B; A^2 + B^2 = C^2).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Keywords

Comments

Complement of A008846. - R. J. Mathar, Aug 15 2010
A024362(a(n)) = 0. - Reinhard Zumkeller, Dec 02 2012
Except for the 1st term 1, complement of A004613. - Federico Provvedi, Jan 26 2019
After 1, numbers k for which A065338(k) > 1, i.e., after 1, numbers all of whose prime divisors are not of the form 4u+1. - Antti Karttunen, Dec 26 2020

Examples

			3,4,5; number 5 is not in this sequence.
5,12,13; number 13 is not in this sequence.
8,15,17; number 17 is not in this sequence.
7,24,25; number 25 is not in this sequence.
		

Crossrefs

Subsequences: A125667 (the odd terms), A339875.

Programs

  • Haskell
    import Data.List (elemIndices)
    a137409 n = a137409_list !! (n-1)
    a137409_list = map (+ 1) $ elemIndices 0 a024362_list
    -- Reinhard Zumkeller, Dec 02 2012
    
  • Mathematica
    okQ[1] = True;
    okQ[n_] := AnyTrue[FactorInteger[n][[All, 1]], Mod[#, 4] != 1&];
    Select[Range[100], okQ] (* Jean-François Alcover, Mar 10 2019, after Federico Provvedi's comment *)
  • PARI
    A065338(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = (f[i, 1]%4)); factorback(f); };
    isA137409(n) = ((1==n)||(A065338(n)>1)); \\ Antti Karttunen, Dec 26 2020

Extensions

Extended by R. J. Mathar, Aug 15 2010

A156679 Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, gcd (A, B) = 1, A < BA020884(n)).

Original entry on oeis.org

5, 13, 25, 17, 41, 61, 37, 85, 113, 65, 145, 181, 29, 101, 221, 265, 145, 313, 365, 53, 197, 421, 481, 257, 65, 545, 613, 85, 325, 685, 89, 761, 401, 841, 925, 125, 485, 1013, 1105, 73, 577, 1201, 149, 1301, 173, 677, 1405, 1513, 785, 185, 1625, 1741, 109, 229
Offset: 1

Views

Author

Ant King, Feb 15 2009

Keywords

Comments

The ordered sequence of A values is A020884(n) and the ordered sequence of C values is A020882(n) (allowing repetitions) and A008846(n) (excluding repetitions).

Examples

			As the first four primitive Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (7,24,25) and (8,15,17), then a(1)=5, a(2)=13, a(3)=25 and a(4)=17.
		

References

  • Beiler, Albert H.: Recreations In The Theory Of Numbers, Chapter XIV, The Eternal Triangle, Dover Publications Inc., New York, 1964, pp. 104-134.
  • Sierpinski, W.; Pythagorean Triangles, Dover Publications, Inc., Mineola, New York, 2003.

Crossrefs

Programs

  • Haskell
    a156679 n = a156679_list !! (n-1)
    a156679_list = f 1 1 where
       f u v | v > uu `div` 2        = f (u + 1) (u + 2)
             | gcd u v > 1 || w == 0 = f u (v + 2)
             | otherwise             = w : f u (v + 2)
             where uu = u ^ 2; w = a037213 (uu + v ^ 2)
    -- Reinhard Zumkeller, Nov 09 2012
  • Mathematica
    PrimitivePythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[iHarvey P. Dale, May 10 2020 *)

A146945 Hypotenuses of primitive Pythagorean triples which are not prime numbers and which are the hypotenuse of a unique triangle.

Original entry on oeis.org

25, 125, 169, 289, 625, 841, 1369, 1681, 2197, 2809, 3125, 3721, 4913, 5329, 7921, 9409, 10201, 11881, 12769, 15625, 18769, 22201, 24389, 24649, 28561, 29929, 32761, 37249, 38809, 50653, 52441, 54289, 58081, 66049, 68921, 72361, 76729, 78125
Offset: 1

Views

Author

John Harrison (harrison_uk_2000(AT)yahoo.co.uk), Apr 20 2009

Keywords

Comments

Each term is a prime power of the form p^e where p is in A002144 and e>1.
A proper subset of A120960 by eliminating A002144.
A proper subset of A120961 by eliminating A024409.
A proper subset of A008846 by eliminating A002144 and A024409.
A proper subset of A020882 by eliminating A002144, A024409 and duplicate entries.

Crossrefs

Programs

  • Mathematica
    lst1 = {1, 1}; lst2 = {}; Do[ If[ GCD[m, n] == 1, a = 2m*n; b = m^2 - n^2; c = m^2 + n^2; If[ !PrimeQ@c, AppendTo[lst1, c]]], {m, 3, 1000}, {n, If[OddQ@m, 2, 1], m - 1, 2}]; lst1 = Sort@ lst1; Do[ If[ lst1[[n - 1]] != lst1[[n]] && lst1[[n]] != lst1[[n + 1]], AppendTo[lst2, lst1[[n]]]], {n, 2, Length@ lst1 - 1}]; Take[lst2, 50] (* Robert G. Wilson v, May 02 2009 *)

Extensions

a(7) corrected by and a(17) and further terms from Robert G. Wilson v, May 02 2009
Minor edits to comments. - Ray Chandler, Nov 27 2019

A263728 Primitive Pythagorean triples (a, b, c) in lexicographic order, with a < b < c.

Original entry on oeis.org

3, 4, 5, 5, 12, 13, 7, 24, 25, 8, 15, 17, 9, 40, 41, 11, 60, 61, 12, 35, 37, 13, 84, 85, 15, 112, 113, 16, 63, 65, 17, 144, 145, 19, 180, 181, 20, 21, 29, 20, 99, 101, 21, 220, 221, 23, 264, 265, 24, 143, 145, 25, 312, 313, 27, 364, 365, 28, 45, 53
Offset: 1

Views

Author

Colin Barker, Nov 20 2015

Keywords

Comments

a(3*k+1)*a(3*k+2) / (a(3*k+1)+a(3*k+2)+a(3*k+3)) is always an integer for k >= 0. Also note that a(3*k+1)*a(3*k+2)/2 is never a perfect square. - Altug Alkan, Apr 08 2016

Examples

			The first few triples are [3, 4, 5], [5, 12, 13], [7, 24, 25], [8, 15, 17], [9, 40, 41], [11, 60, 61], [12, 35, 37], [13, 84, 85], [15, 112, 113], [16, 63, 65], [17, 144, 145], [19, 180, 181], [20, 21, 29], [20, 99, 101], ... - _N. J. A. Sloane_, Dec 15 2015
		

References

  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, Chapter 5, Section 5.3.

Crossrefs

Programs

  • Maple
    a:=[]; b:={}; M:=30;
    for u from 2 to M do for v from 1 to u-1 do
       if gcd(u,v)=1 and u+v mod 2 = 1 then t1:=u^2-v^2; t2:= 2*u*v; t3:=u^2+v^2;
       w:=sort([t1,t2]); a:=[op(a), [op(w),t3]]; b:={ op(b), op(w), t3};
       fi:
    od: od:
    a;
    sort(a); # A263728
    sort(b); # A016825 and A042965 (Maple code from N. J. A. Sloane, Dec 15 2015)
  • PARI
    \\ Primitive Pythagorean triples (a,b,c) with a
    				

A369563 Powerful numbers whose prime factors are all of the form 4*k + 1.

Original entry on oeis.org

1, 25, 125, 169, 289, 625, 841, 1369, 1681, 2197, 2809, 3125, 3721, 4225, 4913, 5329, 7225, 7921, 9409, 10201, 11881, 12769, 15625, 18769, 21025, 21125, 22201, 24389, 24649, 28561, 29929, 32761, 34225, 36125, 37249, 38809, 42025, 48841, 50653, 52441, 54289, 54925
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2024

Keywords

Comments

Closed under multiplication.

Crossrefs

Intersection of A001694 and A004613.
Subsequence: A146945.
Similar sequence: A352492, A369564, A369565, A369566.

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[FactorInteger[n], Mod[First[#], 4] == 1 && Last[#] > 1 &]; Select[Range[50000], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 1]%4 != 1 || f[i, 2] == 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p == 1 (mod 4)} (1 + 1/(p*(p-1))) = A175647 * A334424 = 1.0654356335... .

A375750 Numbers k such that 4*k+1 is the hypotenuse of a primitive Pythagorean triangle with an odd short leg.

Original entry on oeis.org

1, 3, 6, 10, 15, 16, 21, 22, 24, 28, 36, 37, 39, 42, 45, 46, 48, 51, 55, 58, 66, 67, 69, 72, 76, 78, 79, 84, 88, 91, 94, 97, 105, 106, 108, 111, 115, 120, 121, 123, 126, 130, 135, 136, 139, 142, 153, 154, 157, 163, 168, 171, 172, 174, 177, 181, 186, 190, 192, 193
Offset: 1

Views

Author

Hugo Pfoertner, Sep 13 2024

Keywords

Comments

Sorted distinct values of ({A081961} - 1)/4.

Crossrefs

Programs

  • PARI
    \\ Uses function is_a376208 from A376208
    is_a376208(n,1)
  • Python
    from math import gcd, isqrt
    test_all_k_upto   = 193
    A375750, x, limit = set(), 2, test_all_k_upto * 4 + 1
    while x**2 + (lowY := isqrt(2*x**2)-x)**2 < limit:
       for y in range(min(x-1,(yy:=isqrt(limit - x**2))-(yy%2 == x%2)), lowY,-2):
           if gcd(x,y) == 1: A375750.add(((x**2 + y**2) - 1) // 4)
       x += 1
    print(A375750:=sorted(A375750)) # Karl-Heinz Hofmann, Sep 17 2024
    

A376208 Numbers k such that 4*k+1 is the hypotenuse of a primitive Pythagorean triangle with an even short leg.

Original entry on oeis.org

4, 7, 9, 13, 16, 18, 21, 25, 27, 31, 34, 36, 43, 46, 49, 51, 55, 57, 60, 64, 66, 70, 73, 76, 81, 87, 91, 93, 94, 99, 100, 102, 111, 112, 114, 121, 123, 126, 127, 133, 136, 141, 144, 148, 150, 156, 157, 160, 165, 169, 171, 172, 175, 181, 183, 186, 189, 196, 198, 202
Offset: 1

Views

Author

Hugo Pfoertner, Sep 20 2024

Keywords

Comments

This sequence is not A094178 \ A375750, because there are hypotenuses for which both kinds of triangles exist. The smallest example occurs for hypotenuse c = 4*a(5) + 1 = 65. The triangle (16, 63, 65) has an even short leg, but there is also the triangle (33, 56, 65) with an odd short leg. Thus, 16 = (65-1)/4 is a term in this sequence and in A375750.
Sorted distinct values of ({A081985} - 1)/4.

Crossrefs

Programs

  • PARI
    is_a376208(n,r=0) = my(c=4*n+1, q=qfbsolve(Qfb(1,0,1), c^2, 3), qd=#q, is=0); for(k=1, qd-1, if(vecmin(abs(q[k]))%2==r && gcd([c,q[k]])==1, is=1; break)); is
    
  • Python
    # for an array from the beginning
    from math import gcd, isqrt
    test_all_k_upto = 202
    A376208, limit = set(), test_all_k_upto * 4 + 1
    for x in range(2,isqrt(limit)+1):
        for y in range(min(((d:=isqrt(2*x**2)-x))-(d%2==x%2), (yy:=isqrt(limit-x**2))-(yy%2==x%2)),0,-2):
            if gcd(x, y) == 1: A376208.add((x**2 + y**2 - 1) // 4)
    print(A376208:=sorted(A376208)) # Karl-Heinz Hofmann, Sep 28 2024
    
  • Python
    # for testing high single terms
    from math import isqrt, gcd
    from sympy import factorint
    def A376208_isok(k):
        c  = k * 4 + 1
        if any([(pf-1) % 4 for pf in factorint(c)]): return False # (Test imported from A008846)
        y2 = c - (x2:=(x:=isqrt(c))**2)
        while 2*x*(y:=isqrt(y2)) < x2-y2:
            if y2 == y**2 and gcd(x, y) == 1: return True
            x -= 1
            y2 = c - (x2:=x**2) # Karl-Heinz Hofmann, Oct 17 2024

A120961 Composite hypotenuses of primitive Pythagorean triangles.

Original entry on oeis.org

25, 65, 85, 125, 145, 169, 185, 205, 221, 265, 289, 305, 325, 365, 377, 425, 445, 481, 485, 493, 505, 533, 545, 565, 625, 629, 685, 689, 697, 725, 745, 785, 793, 841, 845, 865, 901, 905, 925, 949, 965, 985, 1025, 1037, 1073, 1105, 1145, 1157, 1165, 1189, 1205
Offset: 1

Views

Author

Lekraj Beedassy, Jul 19 2006

Keywords

Comments

Composite entries of A008846. Disjoint union of A024409 and A146945.

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[ If[ GCD[m, n] == 1, a = 2 m*n; b = m^2 - n^2; c = m^2 + n^2; If[ !PrimeQ@c, AppendTo[lst, c]]], {m, 3, 300}, {n, If[ OddQ@m, 2, 1], m - 1, 2}]; Take[ Union@ lst, 51] (* Robert G. Wilson v, May 02 2009 *)

Extensions

Term 485, which satisfies 485^2 = 476^2 + 93^2, added by Robert G. Wilson v, May 02 2009
Previous Showing 11-20 of 54 results. Next