cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 200 results. Next

A299379 Numbers k such that k * 16^k - 1 is prime.

Original entry on oeis.org

167, 189, 639
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(4) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), this sequence (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*16^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*16^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*16^n-1), print1(n", ")))
    

A299380 Numbers k such that k * 17^k - 1 is prime.

Original entry on oeis.org

2, 18, 20, 38, 68, 3122, 3488, 39500
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(9) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), this sequence (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*17^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*17^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*17^n-1), print1(n", ")))
    

A299381 Numbers k such that k * 18^k - 1 is prime.

Original entry on oeis.org

1, 2, 6, 8, 10, 28, 30, 39, 45, 112, 348, 380, 458, 585, 17559, 38751, 43346, 46984, 92711
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(20) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), this sequence (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*18^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*18^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*18^n-1), print1(n", ")))
    

A299382 Numbers k such that k * 19^k - 1 is prime.

Original entry on oeis.org

12, 410, 33890, 91850, 146478, 189620, 280524
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(8) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), this sequence (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*19^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*19^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*19^n-1), print1(n", ")))
    

A299383 Numbers k such that k * 20^k - 1 is prime.

Original entry on oeis.org

1, 18, 44, 60, 80, 123, 429, 1166, 2065, 8774, 35340, 42968, 50312, 210129
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(15) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), this sequence (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*20^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*20^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*20^n-1), print1(n", ")))
    

A078892 Numbers n such that phi(n) - 1 is prime, where phi is Euler's totient function (A000010).

Original entry on oeis.org

5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 38, 39, 42, 43, 44, 45, 49, 50, 51, 52, 54, 56, 61, 62, 64, 65, 66, 68, 69, 70, 72, 73, 77, 78, 80, 81, 84, 86, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 109, 111, 112, 117
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 12 2002

Keywords

Comments

For all primes p: p is in the sequence iff p is the greater member of a twin prime pair (A006512), see A078893.
Union of A006512 and A078893. - Ray Chandler, May 26 2008

Crossrefs

Programs

A246397 Numbers n such that Phi(12, n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 4, 5, 9, 10, 12, 13, 17, 25, 27, 30, 31, 36, 38, 39, 43, 48, 52, 55, 56, 61, 62, 65, 83, 92, 94, 99, 100, 104, 105, 109, 114, 118, 126, 131, 166, 168, 169, 172, 183, 185, 190, 194, 196, 198, 209, 224, 225, 229, 231, 239, 244, 257, 260, 261, 263, 269, 270, 272, 278, 291, 296, 299, 300, 302, 308, 311
Offset: 1

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Numbers n such that n^4-n^2+1 is prime, or numbers n such that A060886(n) is prime.

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862 (11), this sequence (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).

Programs

  • Maple
    A246397:=n->`if`(isprime(n^4-n^2+1),n,NULL): seq(A246397(n),n=1..300); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    Select[Range[350], PrimeQ[Cyclotomic[12, #]] &] (* Vincenzo Librandi, Jan 17 2015 *)
  • PARI
    for(n=1,10^3,if(isprime(polcyclo(12,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014

A346868 Sum of divisors of the numbers with no middle divisors.

Original entry on oeis.org

4, 6, 8, 18, 12, 14, 24, 18, 20, 32, 36, 24, 42, 40, 30, 32, 48, 54, 38, 60, 56, 42, 44, 84, 72, 48, 72, 98, 54, 72, 80, 90, 60, 62, 96, 84, 68, 126, 96, 72, 74, 114, 124, 140, 168, 80, 126, 84, 108, 132, 120, 90, 168, 128, 144, 120, 98, 102, 216, 104, 192, 162, 108, 110
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the width is equal to zero.
So knowing this characteristic shape we can know if a number has middle divisors (or not) just by looking at the diagram, even ignoring the concept of middle divisors.
Therefore we can see a geometric pattern of the distribution of the numbers with no middle divisors in the stepped pyramid described in A245092.
For the definition of "width" see A249351.
All terms are even numbers.

Examples

			a(4) = 18 because the sum of divisors of the fourth number with no middle divisors (i.e., 10) is 1 + 2 + 5 + 10 = 18.
On the other hand we can see that in the main diagonal of every diagram the width is equal to zero as shown below.
Illustration of initial terms:
m(n) = A071561(n).
.
   n   m(n) a(n)   Diagram
.                      _   _   _     _ _   _ _     _   _   _ _ _     _
                      | | | | | |   | | | | | |   | | | | | | | |   | |
                   _ _|_| | | | |   | | | | | |   | | | | | | | |   | |
   1    3    4    |_ _|  _|_| | |   | | | | | |   | | | | | | | |   | |
                   _ _ _|    _|_|   | | | | | |   | | | | | | | |   | |
   2    5    6    |_ _ _|  _|    _ _| | | | | |   | | | | | | | |   | |
                   _ _ _ _|     |  _ _|_| | | |   | | | | | | | |   | |
   3    7    8    |_ _ _ _|  _ _|_|    _ _|_| |   | | | | | | | |   | |
                            |  _|     |  _ _ _|   | | | | | | | |   | |
                   _ _ _ _ _| |      _|_|    _ _ _|_| | | | | | |   | |
   4   10   18    |_ _ _ _ _ _|  _ _|       |    _ _ _|_| | | | |   | |
   5   11   12    |_ _ _ _ _ _| |  _|      _|   |  _ _ _ _|_| | |   | |
                   _ _ _ _ _ _ _| |      _|  _ _| | |  _ _ _ _|_|   | |
   6   13   14    |_ _ _ _ _ _ _| |  _ _|  _|    _| | |    _ _ _ _ _| |
   7   14   24    |_ _ _ _ _ _ _ _| |     |     |  _|_|   |  _ _ _ _ _|
                                    |  _ _|  _ _|_|       | |
                   _ _ _ _ _ _ _ _ _| |  _ _|  _|        _|_|
   8   17   18    |_ _ _ _ _ _ _ _ _| | |_ _ _|         |
                   _ _ _ _ _ _ _ _ _ _| |  _ _|        _|
   9   19   20    |_ _ _ _ _ _ _ _ _ _| | |        _ _|
                   _ _ _ _ _ _ _ _ _ _ _| |  _ _ _|
  10   21   32    |_ _ _ _ _ _ _ _ _ _ _| | |  _ _|
  11   22   36    |_ _ _ _ _ _ _ _ _ _ _ _| | |
  12   23   24    |_ _ _ _ _ _ _ _ _ _ _ _| | |
                                            | |
                   _ _ _ _ _ _ _ _ _ _ _ _ _| |
  13   26   42    |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
		

Crossrefs

Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346866 (of second hexagonal numbers), A346867 (of numbers with middle divisors).

Programs

  • Mathematica
    s[n_] := Module[{d = Divisors[n]}, If[AnyTrue[d, Sqrt[n/2] <= # < Sqrt[n*2] &], 0, Plus @@ d]]; Select[Array[s, 110], # > 0 &] (* Amiram Eldar, Aug 19 2021 *)
  • PARI
    is(n) = fordiv(n, d, if(sqrt(n/2) <= d && d < sqrt(2*n), return(0))); 1; \\ A071561 apply(sigma, select(is, [1..150])) \\ Michel Marcus, Aug 19 2021

Formula

a(n) = A000203(A071561(n)).

A363636 Indices of numbers of the form k^2+1, k >= 0, that can be written as a product of smaller numbers of that same form.

Original entry on oeis.org

0, 3, 7, 13, 17, 18, 21, 31, 38, 43, 47, 57, 68, 73, 91, 99, 111, 117, 123, 132, 133, 157, 183, 211, 241, 242, 253, 255, 268, 273, 293, 302, 307, 313, 322, 327, 343, 381, 413, 421, 438, 443, 463, 487, 507, 515, 553, 557, 577, 593, 601, 651, 693, 697, 703, 707
Offset: 1

Views

Author

Pontus von Brömssen, Jun 19 2023

Keywords

Comments

For the corresponding sequence for numbers of the form k^3+1 instead of k^2+1, the only terms known to me are 0 and 26, with 26^3+1 = (2^3+1)^2*(6^3+1).

Examples

			0 is a term because 0^2+1 = 1 equals the empty product.
3 is a term because 3^2+1 = 10 = 2*5 = (1^2+1)*(2^2+1).
38 is a term because 38^2+1 = 1445 = 5*17*17 = (2^2+1)*(4^2+1)^2. (This is the first term that requires more than two factors.)
		

Crossrefs

Sequences that list those terms (or their indices or some other key) of a given sequence that are products of smaller terms of the same sequence (in other words, the nonprimitive terms of the multiplicative closure of the sequence):
this sequence (A002522),

Programs

  • Mathematica
    g[lst_, p_] :=
      Module[{t, i, j},
       Union[Flatten[Table[t = lst[[i]]; t[[j]] = p*t[[j]];
          Sort[t], {i, Length[lst]}, {j, Length[lst[[i]]]}], 1],
        Table[Sort[Append[lst[[i]], p]], {i, Length[lst]}]]];
    multPartition[n_] :=
      Module[{i, j, p, e, lst = {{}}}, {p, e} =
        Transpose[FactorInteger[n]];
       Do[lst = g[lst, p[[i]]], {i, Length[p]}, {j, e[[i]]}]; lst];
    output = Join[{0}, Flatten[Position[Table[
         test = Sqrt[multPartition[n^2 + 1][[2 ;; All]] - 1];
         Count[AllTrue[#, IntegerQ] & /@ test, True] > 0
         , {n, 707}], True]]]
    (* David Trimas, Jul 23 2023 *)

A008331 a(n) = phi(prime(n)+1).

Original entry on oeis.org

2, 2, 2, 4, 4, 6, 6, 8, 8, 8, 16, 18, 12, 20, 16, 18, 16, 30, 32, 24, 36, 32, 24, 24, 42, 32, 48, 36, 40, 36, 64, 40, 44, 48, 40, 72, 78, 80, 48, 56, 48, 72, 64, 96, 60, 80, 104, 96, 72, 88, 72, 64, 110, 72, 84, 80, 72, 128, 138, 92, 140, 84, 120, 96, 156, 104, 164, 156, 112, 120, 116
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    for i from 1 to 500 do if isprime(i) then print(phi(i+1)); fi; od;
  • Mathematica
    EulerPhi[1 + Prime@ Range@ 71] (* Michael De Vlieger, Feb 17 2021 *)
  • PARI
    a(n) = eulerphi(prime(n)+1); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = A000010(A008864(n)). - Michel Marcus, Feb 17 2021

Extensions

Offset 1 from Michel Marcus, Feb 17 2021
Previous Showing 81-90 of 200 results. Next