cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 77 results. Next

A120210 Integer squares y from the smallest solutions of y^2 = x*(a^N - x)*(b^N + x) (elliptic line, Weierstrass equation) with a and b legs in primitive Pythagorean triangles and N = 2. Sequence ordered in increasing values of leg a.

Original entry on oeis.org

20, 30, 156, 600, 420, 1640, 3660, 520, 2590, 7140, 1224, 10920, 8190, 20880, 32580, 4872, 19998, 5220, 48620, 69960, 3150, 41470, 97656, 132860, 19080, 76830, 176820, 230880, 131070, 12740, 296480, 11100, 375156, 52360, 209950, 468540, 64080
Offset: 1

Views

Author

Keywords

Comments

The case x congruent to 0 mod b or b congruent to 0 mod x is frequent (e.g., A120212). Note that the triples a = 3, b = 4, c = 5 and a = 4, b = 3, c = 5 provide a different result for (x, y).
The natural solution is y = c * b * (c-b) and x = b * (c-b) with c hypotenuse in the triple. - Giorgio Balzarotti, Jul 19 2006

Examples

			First primitive Pythagorean triple: 3, 4, 5.
Weierstrass equation: y^2 = x*(3^2 - x)*(4^2 + x).
Smallest integer solution: (x, y) = (4,20).
First element in the sequence: y = 20.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 47.

Crossrefs

Programs

  • Maple
    flag:=1; x:=0; # a, b, c primitive Pythagorean triple
    while flag=1 do x:=x+1; y2:=x*(a^2-x)*(x+b^2); if (floor(sqrt(y2)))^2=y2 then print(sqrt(y2)); flag:=0; fi; od;

A163366 a(n) = (-1)^floor((prime(n)+2)/2) mod prime(n).

Original entry on oeis.org

1, 1, 4, 1, 1, 12, 16, 1, 1, 28, 1, 36, 40, 1, 1, 52, 1, 60, 1, 1, 72, 1, 1, 88, 96, 100, 1, 1, 108, 112, 1, 1, 136, 1, 148, 1, 156, 1, 1, 172, 1, 180, 1, 192, 196, 1, 1, 1, 1, 228, 232, 1, 240, 1, 256, 1, 268, 1, 276, 280, 1, 292, 1, 1, 312, 316, 1, 336, 1, 348, 352, 1, 1, 372, 1
Offset: 1

Views

Author

Peter Luschny, Jul 25 2009

Keywords

Comments

Remove the '1's from the sequence to get A152680.
Product modulo p of the quadratic residues of p, where p = prime(n). [Jonathan Sondow, May 14 2010]

Examples

			a(4) = 1 because the quadratic residues of prime(4) = 7 are 1, 2, and 4, and 1*2*4 = 8 == 1 (mod 7). - _Jonathan Sondow_, May 14 2010
		

References

  • Carl-Erik Froeberg, On sums and products of quadratic residues, BIT, Nord. Tidskr. Inf.-behandl. 11 (1971) 389-398. [Jonathan Sondow, May 14 2010]

Crossrefs

Programs

  • Maple
    seq((-1)^iquo(ithprime(i)+2,2) mod ithprime(i),i=1..113);
  • Mathematica
    Table[Mod[ Apply[Times, Flatten[Position[ Table[JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]]], Prime[n]], {n, 1, 80}] (* Jonathan Sondow, May 14 2010 *)

Formula

a(n)*A177863(n) == -1 (mod prime(n)), by Wilson's theorem. - Jonathan Sondow, May 14 2010
a(n) = A177860(n) modulo prime(n). - Jonathan Sondow, May 14 2010

A244659 Decimal expansion of 4*K/Pi, a constant appearing in the asymptotic evaluation of the number of non-hypotenuse numbers not exceeding a given bound, where K is the Landau-Ramanujan constant.

Original entry on oeis.org

9, 7, 3, 0, 3, 9, 7, 7, 6, 7, 7, 1, 7, 8, 1, 9, 9, 4, 2, 5, 4, 4, 9, 1, 2, 8, 1, 1, 7, 3, 6, 4, 6, 8, 1, 1, 0, 7, 6, 3, 4, 3, 9, 6, 3, 4, 7, 9, 0, 8, 2, 4, 2, 7, 3, 7, 6, 3, 0, 9, 0, 2, 1, 6, 3, 2, 5, 9, 7, 1, 0, 1, 8, 6, 4, 1, 5, 1, 6, 3, 4, 2, 9, 5, 2, 0, 4, 0, 4, 2, 0, 7, 6, 2, 1, 3, 8, 7, 4, 2
Offset: 0

Views

Author

Jean-François Alcover, Jul 04 2014

Keywords

Examples

			0.973039776771781994254491281173646811...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, 2.3 Landau-Ramanujan Constant, p. 101.

Crossrefs

Programs

  • Mathematica
    digits = 100; LandauRamanujan[n_] := With[{K = Ceiling[Log[2, n*Log[3, 10]]]}, N[Product[(((1-2^(-2^k))*4^2^k*Zeta[2^k])/(Zeta[2^k, 1/4] - Zeta[2^k, 3/4]))^2^(-k-1), {k, 1, K}]/Sqrt[2], n]]; K = LandauRamanujan[digits+5]; RealDigits[4*K/Pi, 10, digits] // First (* after Victor Adamchik *)

A293283 Numbers n such that n^2 = a^2 + b^5 for positive integers a b and n.

Original entry on oeis.org

6, 9, 18, 40, 42, 68, 75, 90, 99, 105, 122, 126, 130, 174, 192, 196, 225, 251, 257, 288, 315, 325, 330, 350, 405, 490, 499, 504, 516, 528, 546, 550, 576, 614, 651, 665, 684, 726, 735, 744, 849, 882, 900, 920, 936, 974, 1025, 1032, 1036, 1107, 1140, 1183, 1200
Offset: 1

Views

Author

XU Pingya, Oct 04 2017

Keywords

Comments

For n > 0, k = (n + 1)(2n + 1)^2 is a term in this sequence, because k^2 = (n * (2n + 1)^2)^2 + (2n + 1)^5. Examples: 18, 75, 196, 405, 726, 1183.
When z^2 = x^2 + y^2 (i.e., z = A009003(n)), (z * y^4)^2 = (x * y^4)^2 + (y^2)^5. Thus z * y^4 is a term in this sequence. For example, 1200. More generally, for positive integer i, j and k, x^(5i - 5) * y^(5j - 1) * z^(5k - 5) is in this sequence.
When z^2 = x^2 + y^3 (i.e., z = A070745(n)), (z * y)^2 = (x * y)^2 + y^5. Thus z * y is in this sequence. E.g. 6, 18, 40, ... . More generally, for positive integer i, j and k, x^(5i - 5) * y^(5j - 4) * z^(5k - 4) is in this sequence.
When z^2 = x^2 + y^4 (i.e., z = A271576(n)), (z * y^3)^2 = (x * y^3)^2 + (y^2)^5. Thus z * y^3 is also in this sequence. E.g. 40, 405, 1107, ... . More generally, for positive integer i, j and k, x^(5i - 5) * y^(5j - 2) * z^(5k - 4) is in this sequence.

Examples

			6^2 = 2^2 + 2^5.
9^2 = 7^2 + 2^5.
		

Crossrefs

Programs

  • Mathematica
    c[n_]: = Count[n^2 - Range[(n^2 - 1)^(1/5)]^5, _?(IntegerQ[Sqrt[#]] &)] > 0;
    Select[Range[1200], c]
  • PARI
    isok(n) = for (k=1, n-1, if (ispower(n^2-k^2, 5), return (1));); return (0); \\ Michel Marcus, Oct 06 2017

A293694 Numbers z such that x^2 + y^8 = z^2 for positive integers x and y.

Original entry on oeis.org

20, 34, 65, 135, 320, 369, 544, 1040, 1095, 1305, 1350, 1404, 1620, 1625, 1746, 1971, 2056, 2160, 2379, 2754, 3060, 3281, 3996, 4100, 4470, 5120, 5265, 5904, 6625, 7825, 7830, 8194, 8575, 8704, 8796, 10250, 10935, 11125, 11700, 12500, 13154, 14500, 15579
Offset: 1

Views

Author

XU Pingya, Oct 16 2017

Keywords

Comments

Let i, j and k be nonnegative integers, m > n be positive integers. As ((m^2 - n^2)^(4*i+1) * (2*m*n)^(4*j+3) * (m^2 + n^2)^(4*k))^2 + ((m^2 - n^2)^i * (2*m*n)^(j+1) * (m^2 + n^2)^k)^8 = ((m^2 - n^2)^(4*i) * (2*m*n)^(4*j+3) * (m^2 + n^2)^(4*k+1))^2, so that the number of the form (m^2 - n^2)^(4*i) * (2*m*n)^(4*j+3) * (m^2 + n^2)^(4*k+1) is a term.
When (x, y, z) is a solution of x^2 + y^4 = z^2 (i.e., z = A271576(n)), (x^(4*i+1) * y^(4*j+2) * z^(4*k), x^i * y^(j+1) * z^k, x^(4*i) * y^(4*j+2) * z^(4*k+1)) is a solution of x^2 + y^8 = z^2.
When (x, y, z) is a solution of x^2 + y^6 = z^2 (i.e., z = A293690(n)), (x^(4*i+1) * y^(4*j+1) * z^(4*k), x^i * y^(j+1) * z^k, x^(4*i) * y^(4*j+1) * z^(4*k+1)) is a solution of x^2 + y^8 = z^2.
When (x, y, z) is a solution of x^2 + y^8 = z^2, (x^(4*i+1) * y^(4*j) * z^(4*k), x^i * y^(j+1) * z^k, x^(4*i) * y^(4*j) * z^(4*k+1)) is also a solution of x^2 + y^8 = z^2.

Examples

			12^2 + 2^8 = 20^2, 20 is a term.
63^2 + 2^8 = 65^2, 65 is a term.
		

Crossrefs

Programs

  • Mathematica
    z[n_] := Count[n^2 - Range[(n^2 - 1)^(1/8)]^8, _?(IntegerQ[Sqrt[#]] &)] > 0; Select[Range[16000], z]

A309812 Odd integers k such that k^2 is arithmetic mean of two other perfect squares.

Original entry on oeis.org

5, 13, 15, 17, 25, 29, 35, 37, 39, 41, 45, 51, 53, 55, 61, 65, 73, 75, 85, 87, 89, 91, 95, 97, 101, 105, 109, 111, 113, 115, 117, 119, 123, 125, 135, 137, 143, 145, 149, 153, 155, 157, 159, 165, 169, 173, 175, 181, 183, 185, 187, 193, 195, 197, 203, 205, 215, 219
Offset: 1

Views

Author

Mohsin A. Shaikh, Aug 18 2019

Keywords

Examples

			5 is a term because 5^2 = 25 = (1^2 + 7^2)/2.
		

Crossrefs

Intersection of A005408 and A009003.

Programs

  • Mathematica
    Select[Range[1, 300, 2], SquaresR[2, 2 #^2] > 4 &] (* Giovanni Resta, Aug 18 2019 *)
  • PARI
    isok(n) = {if (n %2, for (i=1, n, x = 2*n^2-i^2; if ((x!=i^2) && (x>0) && issquare(x), return (i));););} \\ Michel Marcus, Aug 18 2019

Extensions

More terms from Giovanni Resta, Aug 18 2019

A108707 Minimum side in Pythagorean triangles with hypotenuse of n.

Original entry on oeis.org

0, 0, 0, 0, 3, 0, 0, 0, 0, 6, 0, 0, 5, 0, 9, 0, 8, 0, 0, 12, 0, 0, 0, 0, 7, 10, 0, 0, 20, 18, 0, 0, 0, 16, 21, 0, 12, 0, 15, 24, 9, 0, 0, 0, 27, 0, 0, 0, 0, 14, 24, 20, 28, 0, 33, 0, 0, 40, 0, 36, 11, 0, 0, 0, 16, 0, 0, 32, 0, 42, 0, 0, 48, 24, 21, 0, 0, 30, 0, 48, 0, 18, 0, 0, 13, 0, 60, 0, 39, 54
Offset: 1

Views

Author

Sébastien Dumortier, Jun 20 2005

Keywords

Examples

			a(5) = 3 as the right triangle with sides (3, 4, 5) has hypotenuse n = 5 smallest side a(5) = 3. This is the smallest side a right triangle with integer sides and hypotenuse 5 can have. - _David A. Corneth_, Apr 10 2021
		

Crossrefs

A046080 gives the number of Pythagorean triangles with hypotenuse n.

Programs

  • Mathematica
    f[n_]:=Block[{k=n-1,m=Sqrt[n/2],a},While[k>m&&!IntegerQ[(a=Sqrt[n^2-k^2])],k--];If[k<=m,0,a]];Table[f[n],{n,90}]
  • PARI
    first(n) = {my(lh = List(), res = vector(n, i, oo)); for(u = 2, sqrtint(n), for(v = 1, u, if (u^2+v^2 > n, break); if ((gcd(u, v) == 1) && (0 != (u-v)%2), for (i = 1, n, if (i*(u^2+v^2) > n, break); listput(lh, i*(u^2+v^2)); res[i*(u^2+v^2)] = vecmin([res[i*(u^2+v^2)], i*(u^2 - v^2), i*2*u*v]))))); for(i = 1, n, if(res[i] == oo, res[i] = 0)); res } \\ David A. Corneth, Apr 10 2021, adapted from A009000

Extensions

Extended by Ray Chandler, Dec 20 2011

A108708 Maximum side length in Pythagorean triangles with hypotenuse n.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 12, 0, 12, 0, 15, 0, 0, 16, 0, 0, 0, 0, 24, 24, 0, 0, 21, 24, 0, 0, 0, 30, 28, 0, 35, 0, 36, 32, 40, 0, 0, 0, 36, 0, 0, 0, 0, 48, 45, 48, 45, 0, 44, 0, 0, 42, 0, 48, 60, 0, 0, 0, 63, 0, 0, 60, 0, 56, 0, 0, 55, 70, 72, 0, 0, 72, 0, 64, 0, 80, 0, 0, 84, 0, 63, 0
Offset: 1

Views

Author

Sébastien Dumortier, Jun 20 2005

Keywords

Examples

			a(5) is 4 as the maximum side (other than the hypotenuse) a right triangle with integer sides and hypotenuse 5 can have.
		

Crossrefs

A046080 gives the number of Pythagorean triangles with hypotenuse n.

Programs

  • Mathematica
    f[n_] := Block[{k = n - 1, m = Sqrt[n/2]}, While[k > m && !IntegerQ[Sqrt[n^2 - k^2]], k-- ]; If[k <= m, 0, k]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Jun 21 2005 *)
  • PARI
    first(n) = {my(lh = List(), res = vector(n)); for(u = 2, sqrtint(n), for(v = 1, u, if (u^2+v^2 > n, break); if ((gcd(u, v) == 1) && (0 != (u-v)%2), for (i = 1, n, if (i*(u^2+v^2) > n, break); listput(lh, i*(u^2+v^2)); res[i*(u^2+v^2)] = max(res[i*(u^2+v^2)], max(i*(u^2 - v^2), i*2*u*v)); ); ); ); ); for(i = 1, n, if(res[i] == oo, res[i] = 0)); res } \\ David A. Corneth, Apr 10 2021, adapted from A009000

Extensions

More terms from Robert G. Wilson v, Jun 21 2005

A242219 Smallest a(n) in Pythagorean triple (a, b, c) such that c(n) - b(n) = n.

Original entry on oeis.org

3, 4, 9, 8, 15, 12, 21, 12, 15, 20, 33, 24, 39, 28, 45, 24, 51, 24, 57, 40, 63, 44, 69, 36, 35, 52, 45, 56, 87, 60, 93, 40, 99, 68, 105, 48, 111, 76, 117, 60, 123, 84, 129, 88, 75, 92, 141, 72, 63, 60, 153, 104, 159, 72, 165, 84, 171, 116, 177, 120, 183, 124, 105, 80, 195, 132, 201, 136, 207, 140, 213, 84, 219, 148, 105, 152, 231, 156
Offset: 1

Views

Author

V.J. Pohjola, May 07 2014

Keywords

Comments

The local minima a(n) predominantly fluctuate, with an increasing amplitude, between the multiples of the leg lengths of the smallest primitive triple (3,4,5) and of its symmetric counterpart (4,3,5). When n grows, minima appear from higher primitive triples which further increase the amplitude.
We have a^2 = c^2 - b^2 = (c-b)(c+b) = n*(c+b). To find the least such square, use n=core(n)*f^2 with core = A007913, f = A000188(n), and look for the least c+b = c-b+2b = n+2b = core(n)*x^2 or x^2 = (n+2b)/core(n) = f^2 + 2b/core(n). The least such integer x is f+1 if core(n) is even, or else f+2. - M. F. Hasler, May 08 2014

Examples

			For n=7, a(7) = sqrt(2*7*h(12)-7^2) = 21;
for n=8, a(8) = sqrt(2*8*h(3)-8^2) = 12;
for n=9, a(9) = sqrt(2*9*h(5)-9^2) = 15;
for n=10, a(10) = sqrt(2*10*h(7)-10^2) = 20.
		

Programs

  • Mathematica
    (* first do *) hypos = A009003; (* then *)
    Table[ First[ Union[ Flatten[ Table[ Select[{Sqrt[2 hypos[[i]]*n - n^2]}, IntegerQ && hypos[[i]] > n], {i, 1, Length[hypos]}]]]], {n, 1, 200}]
    (* view table *) ListLinePlot[%]
  • PARI
    a(n)={ my( f=core(n,1)); sqrtint(( if( bittest( f[1],0), 4*f[2]+4, 2*f[2]+1)*f[1]+n )*n )} \\ M. F. Hasler, May 08 2014

Formula

a(n) = min(sqrt(2n*h(i)-n^2), where h(i)=A009003(i)>n.
a(n) = sqrt(( n + (x^2 - f^2)*core(n))*n ) where f = A000188(n), x = f+1 if core(n) = A007913(n) = n / f^2 is even, x = f+2 if core(n) is odd. - M. F. Hasler, May 08 2014

A244662 Decimal expansion of 'C' (as designated by D. Shanks), a constant appearing in the second order term of the asymptotic expansion of the number of non-hypotenuse numbers not exceeding a given bound.

Original entry on oeis.org

7, 0, 4, 7, 5, 3, 4, 5, 1, 7, 0, 5, 9, 4, 7, 8, 8, 4, 1, 2, 2, 5, 5, 8, 1, 9, 7, 5, 9, 1, 8, 9, 8, 8, 1, 8, 5, 2, 1, 5, 9, 9, 7, 6, 4, 5, 4, 9, 2, 3, 5, 8, 3, 1, 6, 1, 7, 4, 4, 5, 4, 8, 8, 3, 4, 1, 3, 6, 2, 8, 4, 6, 3, 9, 0, 3, 1, 8, 8, 4, 4, 4, 6, 0, 6, 3, 6, 4, 9, 2, 5, 3, 5, 2, 2, 3, 0, 2, 6, 4
Offset: 0

Views

Author

Jean-François Alcover, Jul 04 2014

Keywords

Examples

			0.70475345170594788412255819759189881852...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, 2.3 Landau-Ramanujan Constant, p. 101.

Crossrefs

Cf. A009003, A004144, A062539, A227158, A244659 (first order term).

Programs

  • Mathematica
    digits = 100; m0 = 5; dm = 5; beta[x_] := 1/4^x*(Zeta[x, 1/4] - Zeta[x, 3/4]); L = Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2; Clear[f]; f[m_] := f[m] = 1/2*(1 - Log[Pi*E^EulerGamma/(2*L)]) - 1/4*NSum[Zeta'[2^k]/Zeta[2^k] - beta'[2^k]/beta[2^k] + Log[2]/(2^(2^k) - 1), {k, 1, m}, WorkingPrecision -> digits + 10]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], m = m + dm]; c = A227158 = f[m]; c + 1/2 Log[(Pi/L)^2*Exp[EulerGamma]/2] // RealDigits[#, 10, digits] & // First

Formula

C = c + 1/2*log((Pi/L)^2*exp(gamma)/2), where c is A227158 and L the Lemniscate constant A062539.
Previous Showing 41-50 of 77 results. Next