cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 60 results.

A064448 a(n) = gcd(n^n, phi(n^n)).

Original entry on oeis.org

1, 2, 9, 128, 625, 15552, 117649, 8388608, 129140163, 2000000000, 25937424601, 2972033482752, 23298085122481, 1587429546508288, 29192926025390625, 9223372036854775808, 48661191875666868481, 13115469358432179191808
Offset: 1

Views

Author

Labos Elemer, Oct 02 2001

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,x;
      F:= ifactors(n)[2];
      mul(x[1]^(n*x[2]-1),x=F) * igcd(mul(x[1],x=F), mul(x[1]-1,x=F))
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 18 2018
  • PARI
    a(n) = { my(p=n^n); gcd(p, eulerphi(p)) } \\ Harry J. Smith, Sep 14 2009

Formula

a(n) = gcd(A000312(n), A000010(A000312(n))).
If n = Product_j (p_j)^(e_j) is the prime factorization of n, then a(n) = Product_j p_j^(n e_j - 1) * gcd(Product_j p_j, Product_j (p_j-1)). - Robert Israel, Jan 18 2018
a(n) = A009195(A000312(n)). - Andrew Howroyd, Dec 14 2024

A068502 Composite numbers k such that gcd(sigma(k), k) = gcd(k, phi(k)).

Original entry on oeis.org

10, 12, 14, 22, 26, 34, 35, 38, 42, 44, 45, 46, 56, 58, 62, 65, 70, 74, 76, 77, 78, 82, 85, 86, 92, 94, 99, 105, 106, 114, 115, 118, 119, 122, 124, 130, 133, 134, 142, 143, 146, 154, 158, 161, 166, 168, 170, 172, 178, 184, 185, 186, 187, 188, 194, 195, 202, 206
Offset: 1

Views

Author

Benoit Cloitre, Mar 11 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Cases[Range[2, 206], n_ /; !PrimeQ[n] && GCD[Total[Divisors[n]], n] == GCD[n, EulerPhi[n]]] (* Jean-François Alcover, Mar 15 2011 *)
    fQ[n_]:=!PrimeQ[n]&&GCD[Total[Divisors[n]],n] == GCD[n,EulerPhi[n]];Select[Range[2,206],fQ] (* Zak Seidov, Mar 15 2011 *)

A069809 Numbers k such that gcd(k, phi(k)) = tau(k).

Original entry on oeis.org

1, 8, 9, 18, 24, 40, 56, 84, 88, 104, 136, 152, 156, 184, 228, 232, 248, 296, 328, 344, 360, 372, 376, 424, 444, 472, 488, 516, 536, 568, 584, 632, 664, 712, 732, 776, 792, 804, 808, 824, 856, 872, 876, 904, 948, 1016, 1048, 1096, 1112, 1164, 1192, 1208
Offset: 1

Views

Author

Benoit Cloitre, Apr 30 2002

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..2000] | GCD(n,EulerPhi(n)) eq NumberOfDivisors(n) ];// Marius A. Burtea, Dec 28 2018
  • Mathematica
    Select[Range[1300], GCD[#, EulerPhi[#]] == DivisorSigma[0, #] &] (* Jayanta Basu, Mar 21 2013 *)
  • PARI
    for(n=1,1592,if(gcd(n,eulerphi(n))==numdiv(n),print1(n,",")))
    

A074390 a(n) is the least number k that A074389(k) = n.

Original entry on oeis.org

1, 6, 18, 12, 200, 42, 196, 56, 459, 950, 5203, 396, 9243, 980, 1800, 336, 19363, 270, 13357, 600, 1764, 10406, 72473, 168, 18625, 34814, 4293, 812, 145493, 1350, 15376, 992, 19602, 38726, 41615, 1836, 99937, 26714, 1521, 440, 274003, 3822, 475193
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Examples

			For n = 79: a(79) = 979837 because GCD(979837,998718,961272) = 79 and 979837 is the smallest.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := GCD[DivisorSigma[1, x], EulerPhi[x], x]; t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}]; t
  • PARI
    lista(len) = {my(v = vector(len), c = 0, k = 1, f, i); while(c < len, f = factor(k); i = gcd([k, sigma(k), eulerphi(k)]); if(i <= len && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Nov 14 2024

Formula

a(n) = Min{x; GCD(x, sigma(x), phi(x)) = n} = Min{x; GCD(x, A000005(x), A000010(x)) = n}.

A075857 Least common multiple of totient and cototient of n.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 6, 4, 6, 12, 10, 8, 12, 24, 56, 8, 16, 12, 18, 24, 36, 60, 22, 16, 20, 84, 18, 48, 28, 88, 30, 16, 260, 144, 264, 24, 36, 180, 120, 48, 40, 60, 42, 120, 168, 264, 46, 32, 42, 60, 608, 168, 52, 36, 120, 96, 252, 420, 58, 176, 60, 480, 108, 32, 816, 460, 66
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 15 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM[EulerPhi[n],(n-EulerPhi[n])],{n,70}] (* Harvey P. Dale, Jun 10 2019 *)
  • PARI
    a(n) = {my(p = eulerphi(n)); lcm(p, n-p);} \\ Amiram Eldar, Nov 30 2024

Formula

a(n) = A000010(n)*A051953(n)/A009195(n).

A082506 a(n) = gcd(2^n, n - phi(n)); largest power of 2 dividing cototient(n) = A051953(n).

Original entry on oeis.org

2, 1, 1, 2, 1, 4, 1, 4, 1, 2, 1, 8, 1, 8, 1, 8, 1, 4, 1, 4, 1, 4, 1, 16, 1, 2, 1, 16, 1, 2, 1, 16, 1, 2, 1, 8, 1, 4, 1, 8, 1, 2, 1, 8, 1, 8, 1, 32, 1, 2, 1, 4, 1, 4, 1, 32, 1, 2, 1, 4, 1, 32, 1, 32, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 4, 1, 4, 1, 16, 1, 2, 1, 16, 1, 16, 1, 64, 1, 8, 1
Offset: 1

Views

Author

Labos Elemer, Apr 28 2003

Keywords

Comments

a(n)=1 if and only if n is odd or n = 2. - Robert Israel, May 31 2018

Examples

			Different from A069177, analogous sequence with totient, instead of cototient.
		

Crossrefs

Programs

  • Maple
    f:= n -> padic:-ordp(n - numtheory:-phi(n), 2):
    map(f, [$1..100]); # Robert Israel, May 31 2018

A306528 Numbers k such that gcd(k, phi(k)) = gcd(k, psi(k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 92, 94, 97, 98, 100
Offset: 1

Views

Author

Torlach Rush, Feb 21 2019

Keywords

Comments

Here phi(n) is Euler's totient function A000010 and psi(n) is Dedekind's psi function A001615.
This sequence contains all prime powers p^k where phi(p^k) and psi(p^k) are equidistant from p^k, and gcd(p^k, phi(p^k)) = gcd(p^k, psi(p^k)) = p^(k - 1). For the prime numbers themselves this is trivial since phi(p) and psi(p) differ from p by 1 and 1^0 = 1.
If prime p|k, then p*k is in the sequence if and only if k is in the sequence. - Robert Israel, Mar 05 2019

Examples

			1 is a term because gcd(1, 1) = gcd(1, 1) = 1.
2 is a term because gcd(2, 1) = gcd(2, 3) = 1.
3 is a term because gcd(3, 2) = gcd(3, 4) = 1.
4 is a term because gcd(4, 2) = gcd(4, 6) = 2.
5 is a term because gcd(5, 4) = gcd(5, 6) = 1.
6 is not a term because gcd(6, 2) <> gcd(6, 12).
7 is a term because gcd(7, 6) = gcd(7, 8) = 1.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local p,F;
      F:= numtheory:-factorset(n);
      igcd(n, n*mul(1-1/p, p=F)) = igcd(n, n*mul(1+1/p,p=F))
    end proc:
    select(filter, [$1..200]); # Robert Israel, Mar 05 2019
  • PARI
    dpsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    isok(k) = gcd(k, eulerphi(k)) == gcd(k, dpsi(k)); \\ Michel Marcus, Feb 27 2019

A326416 The numbers k for which gcd(k, phi(k)) + gcd(k, tau(k)) = gcd(k, sigma(k)).

Original entry on oeis.org

3040, 9440, 22240, 27360, 28640, 30080, 50560, 54288, 60640, 67040, 76752, 79840, 99040, 105440, 109888, 118240, 137440, 152960, 163040, 189072, 200160, 201440, 211536, 233440, 234880, 239840, 249216, 252640, 256128, 256464, 259040, 271840, 278928, 296320
Offset: 1

Views

Author

Marius A. Burtea, Oct 18 2019

Keywords

Comments

The terms of the sequence are solutions of the equation A009191(k) + A009195(k) = A009194(k). All terms are composite numbers.
It seems that tau(a(n)) >= 24.

Examples

			For k = 3040 = 2^5 * 5 * 19, phi(k) = 2^4 * 4 * 18 = 2^7 * 3^2, tau(k) = 6* 2* 2 = 2^3 * 3, sigma(k) = 2^3 * 3^3 * 5 *7, gcd(k,phi(k)) + gcd(k tau(k)) = 2^5 + 2^3 = 40 and gcd(k,sigma(k)) = 2^3 * 5 = 40.
		

Crossrefs

Programs

  • Magma
    [k: k in [1..300000]| Gcd(k,NumberOfDivisors(k))+Gcd(k,EulerPhi(k)) eq Gcd(k,SumOfDivisors(k))];
    
  • Mathematica
    aQ[n_] := GCD[n, EulerPhi[n]] + GCD[n, DivisorSigma[0, n]] ==  GCD[n, DivisorSigma[1, n]]; Select[Range[300000], aQ] (* Amiram Eldar, Oct 23 2019 *)
  • PARI
    isok(k) = gcd(k, numdiv(k)) + gcd(k, eulerphi(k)) == gcd(k, sigma(k)); \\ Michel Marcus, Oct 24 2019

A331176 a(n) = n - n/gcd(n, phi(n)), where phi is Euler totient function.

Original entry on oeis.org

0, 0, 0, 2, 0, 3, 0, 6, 6, 5, 0, 9, 0, 7, 0, 14, 0, 15, 0, 15, 14, 11, 0, 21, 20, 13, 24, 21, 0, 15, 0, 30, 0, 17, 0, 33, 0, 19, 26, 35, 0, 35, 0, 33, 30, 23, 0, 45, 42, 45, 0, 39, 0, 51, 44, 49, 38, 29, 0, 45, 0, 31, 56, 62, 0, 33, 0, 51, 0, 35, 0, 69, 0, 37, 60, 57, 0, 65, 0, 75, 78, 41, 0, 77, 0, 43, 0, 77, 0, 75
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Crossrefs

Cf. A003277 (indices of zeros).

Programs

  • Mathematica
    Table[n-n/GCD[n,EulerPhi[n]],{n,90}] (* Harvey P. Dale, Aug 20 2020 *)
  • PARI
    A331176(n) = (n - (n/gcd(n, eulerphi(n))));

Formula

a(n) = n - A109395(n).

A362414 a(n) = gcd(n, phi(n)^2) / gcd(n, phi(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 3, 5
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2023

Keywords

Comments

a(n) = 1 if n is squarefree.

Crossrefs

Programs

  • Magma
    [Gcd(n, EulerPhi(n)^2) / Gcd(n, EulerPhi(n)): n in [1..100]];
    
  • Mathematica
    A362414[n_]:=With[{p=EulerPhi[n]},GCD[n,p^2]/GCD[n,p]];
    Array[A362414,100] (* Paolo Xausa, Oct 22 2023 *)
  • PARI
    a(n)=my(f=eulerphi(n)); gcd(n,f^2)/gcd(n,f) \\ Charles R Greathouse IV, May 03 2023

Formula

a(n) = gcd(n,A127473(n)) / A009195(n).
1 <= a(n) <= sqrt(n). The lower bound is sharp (squarefree numbers), as is the upper bound (squares of primes). - Charles R Greathouse IV, May 03 2023
Previous Showing 51-60 of 60 results.