cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A086874 Seventh power of odd primes.

Original entry on oeis.org

2187, 78125, 823543, 19487171, 62748517, 410338673, 893871739, 3404825447, 17249876309, 27512614111, 94931877133, 194754273881, 271818611107, 506623120463, 1174711139837, 2488651484819, 3142742836021, 6060711605323
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 16 2003

Keywords

Crossrefs

Programs

A160224 Numerator of Hermite(n, 1/29).

Original entry on oeis.org

1, 2, -1678, -10084, 8447020, 84739192, -70869959816, -996927845296, 832429051182992, 15079519188668960, -12571151938430794976, -278779816630273497152, 232033893531586021651648, 6090959605928612309819264, -5061471196749802724815296640
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 2/29, -1678/841, -10084/24389, 8447020/707281..
		

Crossrefs

Cf. A009973 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(2/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
  • Mathematica
    Table[29^n*HermiteH[n, 2/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 1/29)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(2*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
    

Formula

From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 1/29).
E.g.f.: exp(2*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/29)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160225 Numerator of Hermite(n, 2/29).

Original entry on oeis.org

1, 4, -1666, -20120, 8326156, 168671984, -69348284024, -1979630798624, 808588172904080, 29872264717900864, -12120918702550359584, -550935167365293970816, 222057497165125577139904, 12008305406761595815509760, -4807476011385589486479101824
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 4/29, -1666/841, -20120/24389, 8326156/707281
		

Crossrefs

Cf. A009973 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(4/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018
  • Mathematica
    Table[Numerator[HermiteH[n, 2/29]], {n, 0, 15}] (* Wesley Ivan Hurt, Feb 25 2014 *)
    Table[29^n*HermiteH[n, 2/29], {n,0,30}] (* G. C. Greubel, Jul 12 2018~ *)
  • PARI
    a(n)=numerator(polhermite(n,2/29)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 12 2018: (Start)
a(n) = 29^n * Hermite(n, 2/29).
E.g.f.: exp(4*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/29)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160226 Numerator of Hermite(n, 3/29).

Original entry on oeis.org

1, 6, -1646, -30060, 8125356, 250995816, -66828269064, -2934019389456, 769231923622800, 44095556446256736, -11380059521124405984, -809967616552784735424, 205694055560527051103424, 17582550705864569406418560, -4392210914651297082988957824
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 6/29, -1646/841, -30060/24389, 8125356/707281
		

Crossrefs

Cf. A009973 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(6/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
  • Mathematica
    HermiteH[Range[0,20],3/29]//Numerator (* Harvey P. Dale, Mar 31 2018 *)
    Table[29^n*HermiteH[n, 3/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 3/29)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(6*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
    

Formula

From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 3/29).
E.g.f.: exp(6*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/29)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160231 Numerator of Hermite(n, 4/29).

Original entry on oeis.org

1, 8, -1618, -39856, 7845580, 330915808, -63334001336, -3846274345024, 714924336969872, 57474862282401920, -10362725714790706976, -1049628989308325950208, 183334119260591052868288, 22652384474283979401944576, -3827564775957812126802428800
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 8/29, -1618/841, -39856/24389, 7845580/707281.
		

Crossrefs

Cf. A009973 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(8/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
  • Mathematica
    Table[Numerator[HermiteH[n, 4/29]], {n, 0, 15}] (* Wesley Ivan Hurt, Jun 06 2014 *)
    Table[29^n*HermiteH[n, 4/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 4/29)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(8*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
    

Formula

From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 4/29).
E.g.f.: exp(8*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/29)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160236 Numerator of Hermite(n, 5/29).

Original entry on oeis.org

1, 10, -1582, -49460, 7488172, 407648600, -58899040520, -4702980076400, 646447502318480, 69747774931223200, -9088444540784918240, -1264042019751023406400, 155513980696092323212480, 27068563933615579666902400, -3129783062564598942695063680
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 10/29, -1582/841, -49460/24389, 7488172/707281
		

Crossrefs

Cf. A009973 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(10/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
  • Mathematica
    Numerator[HermiteH[Range[0,20],5/29]] (* Harvey P. Dale, Mar 10 2013 *)
    Table[29^n*HermiteH[n, 5/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 5/29)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(10*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
    

Formula

From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 5/29).
E.g.f.: exp(10*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(10/29)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160237 Numerator of Hermite(n, 6/29).

Original entry on oeis.org

1, 12, -1538, -58824, 7054860, 480426192, -53566258296, -5491256229216, 564794050426512, 80667872425448640, -7581837866251154976, -1447815668591059984512, 122905376178286149551808, 30697575968981388522011904, -2319078043886628283835690880
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 12/29, -1538/841, -58824/24389, 7054860/707281,...
		

Crossrefs

Cf. A009973 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(12/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
  • Mathematica
    Table[29^n*HermiteH[n, 6/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 6/29)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(12*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
    

Formula

From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 6/29).
E.g.f.: exp(12*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/29)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160246 Numerator of Hermite(n, 7/29).

Original entry on oeis.org

1, 14, -1486, -67900, 6547756, 548499784, -47387630984, -6198886653904, 471157554050960, 90008424571645664, -5872265109220393184, -1596153412824165573056, 86302501271257396667584, 33424995502240561479908480, -1419140555765946374814673024
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 14/29, -1486/841, -67900/24389, 6547756/707281,...
		

Crossrefs

Cf. A009973 (denominators)

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(14/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
  • Mathematica
    Table[29^n*HermiteH[n, 7/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 7/29)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(14*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
    

Formula

From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 7/29).
E.g.f.: exp(14*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/29)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160251 Numerator of Hermite(n, 8/29).

Original entry on oeis.org

1, 16, -1426, -76640, 5969356, 611143616, -40423986104, -6814445150336, 366920889983120, 97565908182651136, -3993393901642052384, -1704952878058464945664, 46606527919245814078144, 35158473337439989488532480, -456562766083189138816177024
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 16/29, -1426/841, -76640/24389, 5969356/707281, ...
		

Crossrefs

Cf. A009973 (denominators).

Programs

  • GAP
    List(List([0..15],n->Sum([0..Int(n/2)],k->(-1)^k*Factorial(n)*(16/29)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))),NumeratorRat); # Muniru A Asiru, Jul 12 2018
  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(16/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018
    
  • Mathematica
    Numerator[HermiteH[Range[0,20],8/29]] (* Harvey P. Dale, Jul 22 2014 *)
    Table[29^n*HermiteH[n, 8/29], {n,0,30}] (* G. C. Greubel, Jul 12 2018 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Exp[ 16 x - 841 x^2], {x, 0, n}]]; (* Michael Somos, Jul 30 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,8/29)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 12 2018: (Start)
a(n) = 29^n * Hermite(n, 8/29).
E.g.f.: exp(16*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/29)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160252 Numerator of Hermite(n, 9/29).

Original entry on oeis.org

1, 18, -1358, -84996, 5322540, 667658808, -32744702856, -7327417341744, 253642619275152, 103163294897460000, -1982702662432970976, -1770895268099070677568, 4807849834551556801728, 35830291388333570578463616, 539816800507699929385760640
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 18/29, -1358/841, -84996/24389, 5322540/707281,...
		

Crossrefs

Cf. A009973 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(18/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
  • Mathematica
    Table[29^n*HermiteH[n, 9/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
    HermiteH[Range[0,20],9/29]//Numerator (* Harvey P. Dale, Feb 17 2021 *)
  • PARI
    a(n)=numerator(polhermite(n, 9/29)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(18*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
    

Formula

From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 9/29).
E.g.f.: exp(18*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(18/29)^(n-2*k)/(k!*(n-2*k)!)). (End)
Previous Showing 11-20 of 41 results. Next