A086874
Seventh power of odd primes.
Original entry on oeis.org
2187, 78125, 823543, 19487171, 62748517, 410338673, 893871739, 3404825447, 17249876309, 27512614111, 94931877133, 194754273881, 271818611107, 506623120463, 1174711139837, 2488651484819, 3142742836021, 6060711605323
Offset: 1
Douglas Winston (douglas.winston(AT)srupc.com), Sep 16 2003
Cf.
A000040,
A001248,
A030078,
A030514,
A050997,
A030516,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A160224
Numerator of Hermite(n, 1/29).
Original entry on oeis.org
1, 2, -1678, -10084, 8447020, 84739192, -70869959816, -996927845296, 832429051182992, 15079519188668960, -12571151938430794976, -278779816630273497152, 232033893531586021651648, 6090959605928612309819264, -5061471196749802724815296640
Offset: 0
Numerators of 1, 2/29, -1678/841, -10084/24389, 8447020/707281..
-
[Numerator((&+[(-1)^k*Factorial(n)*(2/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
-
Table[29^n*HermiteH[n, 2/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
-
a(n)=numerator(polhermite(n, 1/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(2*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
A160225
Numerator of Hermite(n, 2/29).
Original entry on oeis.org
1, 4, -1666, -20120, 8326156, 168671984, -69348284024, -1979630798624, 808588172904080, 29872264717900864, -12120918702550359584, -550935167365293970816, 222057497165125577139904, 12008305406761595815509760, -4807476011385589486479101824
Offset: 0
Numerators of 1, 4/29, -1666/841, -20120/24389, 8326156/707281
-
[Numerator((&+[(-1)^k*Factorial(n)*(4/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018
-
Table[Numerator[HermiteH[n, 2/29]], {n, 0, 15}] (* Wesley Ivan Hurt, Feb 25 2014 *)
Table[29^n*HermiteH[n, 2/29], {n,0,30}] (* G. C. Greubel, Jul 12 2018~ *)
-
a(n)=numerator(polhermite(n,2/29)) \\ Charles R Greathouse IV, Jan 29 2016
A160226
Numerator of Hermite(n, 3/29).
Original entry on oeis.org
1, 6, -1646, -30060, 8125356, 250995816, -66828269064, -2934019389456, 769231923622800, 44095556446256736, -11380059521124405984, -809967616552784735424, 205694055560527051103424, 17582550705864569406418560, -4392210914651297082988957824
Offset: 0
Numerators of 1, 6/29, -1646/841, -30060/24389, 8125356/707281
-
[Numerator((&+[(-1)^k*Factorial(n)*(6/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
-
HermiteH[Range[0,20],3/29]//Numerator (* Harvey P. Dale, Mar 31 2018 *)
Table[29^n*HermiteH[n, 3/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
-
a(n)=numerator(polhermite(n, 3/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(6*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
A160231
Numerator of Hermite(n, 4/29).
Original entry on oeis.org
1, 8, -1618, -39856, 7845580, 330915808, -63334001336, -3846274345024, 714924336969872, 57474862282401920, -10362725714790706976, -1049628989308325950208, 183334119260591052868288, 22652384474283979401944576, -3827564775957812126802428800
Offset: 0
Numerators of 1, 8/29, -1618/841, -39856/24389, 7845580/707281.
-
[Numerator((&+[(-1)^k*Factorial(n)*(8/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
-
Table[Numerator[HermiteH[n, 4/29]], {n, 0, 15}] (* Wesley Ivan Hurt, Jun 06 2014 *)
Table[29^n*HermiteH[n, 4/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
-
a(n)=numerator(polhermite(n, 4/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(8*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
A160236
Numerator of Hermite(n, 5/29).
Original entry on oeis.org
1, 10, -1582, -49460, 7488172, 407648600, -58899040520, -4702980076400, 646447502318480, 69747774931223200, -9088444540784918240, -1264042019751023406400, 155513980696092323212480, 27068563933615579666902400, -3129783062564598942695063680
Offset: 0
Numerators of 1, 10/29, -1582/841, -49460/24389, 7488172/707281
-
[Numerator((&+[(-1)^k*Factorial(n)*(10/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
-
Numerator[HermiteH[Range[0,20],5/29]] (* Harvey P. Dale, Mar 10 2013 *)
Table[29^n*HermiteH[n, 5/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
-
a(n)=numerator(polhermite(n, 5/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(10*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
A160237
Numerator of Hermite(n, 6/29).
Original entry on oeis.org
1, 12, -1538, -58824, 7054860, 480426192, -53566258296, -5491256229216, 564794050426512, 80667872425448640, -7581837866251154976, -1447815668591059984512, 122905376178286149551808, 30697575968981388522011904, -2319078043886628283835690880
Offset: 0
Numerators of 1, 12/29, -1538/841, -58824/24389, 7054860/707281,...
-
[Numerator((&+[(-1)^k*Factorial(n)*(12/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
-
Table[29^n*HermiteH[n, 6/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
-
a(n)=numerator(polhermite(n, 6/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(12*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
A160246
Numerator of Hermite(n, 7/29).
Original entry on oeis.org
1, 14, -1486, -67900, 6547756, 548499784, -47387630984, -6198886653904, 471157554050960, 90008424571645664, -5872265109220393184, -1596153412824165573056, 86302501271257396667584, 33424995502240561479908480, -1419140555765946374814673024
Offset: 0
Numerators of 1, 14/29, -1486/841, -67900/24389, 6547756/707281,...
-
[Numerator((&+[(-1)^k*Factorial(n)*(14/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
-
Table[29^n*HermiteH[n, 7/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
-
a(n)=numerator(polhermite(n, 7/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(14*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
A160251
Numerator of Hermite(n, 8/29).
Original entry on oeis.org
1, 16, -1426, -76640, 5969356, 611143616, -40423986104, -6814445150336, 366920889983120, 97565908182651136, -3993393901642052384, -1704952878058464945664, 46606527919245814078144, 35158473337439989488532480, -456562766083189138816177024
Offset: 0
Numerators of 1, 16/29, -1426/841, -76640/24389, 5969356/707281, ...
-
List(List([0..15],n->Sum([0..Int(n/2)],k->(-1)^k*Factorial(n)*(16/29)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))),NumeratorRat); # Muniru A Asiru, Jul 12 2018
-
[Numerator((&+[(-1)^k*Factorial(n)*(16/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018
-
Numerator[HermiteH[Range[0,20],8/29]] (* Harvey P. Dale, Jul 22 2014 *)
Table[29^n*HermiteH[n, 8/29], {n,0,30}] (* G. C. Greubel, Jul 12 2018 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Exp[ 16 x - 841 x^2], {x, 0, n}]]; (* Michael Somos, Jul 30 2018 *)
-
a(n)=numerator(polhermite(n,8/29)) \\ Charles R Greathouse IV, Jan 29 2016
A160252
Numerator of Hermite(n, 9/29).
Original entry on oeis.org
1, 18, -1358, -84996, 5322540, 667658808, -32744702856, -7327417341744, 253642619275152, 103163294897460000, -1982702662432970976, -1770895268099070677568, 4807849834551556801728, 35830291388333570578463616, 539816800507699929385760640
Offset: 0
Numerators of 1, 18/29, -1358/841, -84996/24389, 5322540/707281,...
-
[Numerator((&+[(-1)^k*Factorial(n)*(18/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
-
Table[29^n*HermiteH[n, 9/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
HermiteH[Range[0,20],9/29]//Numerator (* Harvey P. Dale, Feb 17 2021 *)
-
a(n)=numerator(polhermite(n, 9/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(18*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018