A319076
Square array T(n,k) read by antidiagonal upwards in which column k lists the partial sums of the powers of the k-th prime, n >= 0, k >= 1.
Original entry on oeis.org
1, 3, 1, 7, 4, 1, 15, 13, 6, 1, 31, 40, 31, 8, 1, 63, 121, 156, 57, 12, 1, 127, 364, 781, 400, 133, 14, 1, 255, 1093, 3906, 2801, 1464, 183, 18, 1, 511, 3280, 19531, 19608, 16105, 2380, 307, 20, 1, 1023, 9841, 97656, 137257, 177156, 30941, 5220, 381, 24, 1, 2047, 29524, 488281, 960800, 1948717
Offset: 0
The corner of the square array is as follows:
A126646 A003462 A003463 A023000 A016123 A091030 A091045
A000012 1, 1, 1, 1, 1, 1, 1, ...
A008864 3, 4, 6, 8, 12, 14, 18, ...
A060800 7, 13, 31, 57, 133, 183, 307, ...
A131991 15, 40, 156, 400, 1464, 2380, 5220, ...
A131992 31, 121, 781, 2801, 16105, 30941, 88741, ...
A131993 63, 364, 3906, 19608, 177156, 402234, 1508598, ...
....... 127, 1093, 19531, 137257, 1948717, 5229043, 25646167, ...
....... 255, 3280, 97656, 960800, 21435888, 67977560, 435984840, ...
....... 511, 9841, 488281, 6725601, 235794769, 883708281, 7411742281, ...
...
Columns 1-15:
A126646,
A003462,
A003463,
A023000,
A016123,
A091030,
A091045,
A218722,
A218726,
A218732,
A218734,
A218740,
A218744,
A218746,
A218750.
Cf.
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A086874
Seventh power of odd primes.
Original entry on oeis.org
2187, 78125, 823543, 19487171, 62748517, 410338673, 893871739, 3404825447, 17249876309, 27512614111, 94931877133, 194754273881, 271818611107, 506623120463, 1174711139837, 2488651484819, 3142742836021, 6060711605323
Offset: 1
Douglas Winston (douglas.winston(AT)srupc.com), Sep 16 2003
Cf.
A000040,
A001248,
A030078,
A030514,
A050997,
A030516,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A160299
Numerator of Hermite(n, 1/31).
Original entry on oeis.org
1, 2, -1918, -11524, 11036140, 110668792, -105835967816, -1487904444976, 1420941302106512, 25719901350164000, -24528002841138116576, -543392509632428313152, 517484251048077204023488, 13567773344258481022584704, -12902725949998740057685701760
Offset: 0
Numerators of 1, 2/31, -1918/961, -11524/29791, 11036140/923521, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(2/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
-
Table[31^n*HermiteH[n, 1/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
-
makelist(num(hermite(n, 1/31)), n, 0, 20); /* Bruno Berselli, Mar 28 2018 */
-
a(n)=numerator(polhermite(n, 1/31)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(2*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
A160300
Numerator of Hermite(n, 2/31).
Original entry on oeis.org
1, 4, -1906, -23000, 10897996, 220415984, -103848077624, -2957229437984, 1385343118601360, 51011732312847424, -23759618336314935584, -1075483968398187231616, 498023914992777619190464, 26797057907106900786753280, -12336437308381113989945920384
Offset: 0
Numerators of 1, 4/31, -1906/961, -23000/29791, 10897996/923521, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(4/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
-
Table[31^n*HermiteH[n, 2/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
-
makelist(num(hermite(n, 2/31)), n, 0, 20); /* Bruno Berselli, Mar 28 2018 */
-
a(n)=numerator(polhermite(n, 2/31)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(4*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
A160301
Numerator of Hermite(n, 3/31).
Original entry on oeis.org
1, 6, -1886, -34380, 10668396, 328323816, -100553342664, -4389550302096, 1326507370388880, 75452769667361376, -22493207874982677984, -1585161480256581714624, 466040432011344287649984, 39356406972705866391987840, -11408347792399213172870573184
Offset: 0
Numerators of 1, 6/31, -1886/961, -34380/29791, 10668396/923521, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(6/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
-
Table[31^n*HermiteH[n, 3/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
-
makelist(num(hermite(n, 3/31)), n, 0, 20); /* Bruno Berselli, Mar 28 2018 */
-
a(n)=numerator(polhermite(n, 3/31)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(6*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
A160302
Numerator of Hermite(n, 4/31).
Original entry on oeis.org
1, 8, -1858, -45616, 10348300, 433482208, -95979305336, -5766751265344, 1245171563867792, 98630939966871680, -20749930192050092576, -2061686107699674430208, 422201535258725661800128, 50928340670055096352718336, -10141700834614078614916251520
Offset: 0
Numerators of 1, 8/31, -1858/961, -45616/29791, 10348300/923521, ...
-
List(List([0..15],n->Sum([0..Int(n/2)],k->(-1)^k*Factorial(n)*(8/31)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))),NumeratorRat); # Muniru A Asiru, Jul 12 2018
-
I:=[1,8]; [n le 2 select I[n] else 8*Self(n-1)-1922*(n-2)*Self(n-2): n in [1..15]]; // Vincenzo Librandi, Mar 28 2018
-
seq(orthopoly[H](n,4/31)*31^n, n=0..40); # Robert Israel, Mar 27 2018
-
Numerator[Table[HermiteH[n, 4/31], {n, 0, 40}]] (* Vincenzo Librandi, Mar 28 2018 *)
-
a(n)=numerator(polhermite(n, 4/31)) \\ Charles R Greathouse IV, Jan 29 2016
A160303
Numerator of Hermite(n, 5/31).
Original entry on oeis.org
1, 10, -1822, -56660, 9939052, 534992600, -90164363720, -7071178300400, 1142359566484880, 120150033211799200, -18559035448937462240, -2494873992820155246400, 367426387533234274214080, 61216037645736403345110400, -8568355342448027542061898880
Offset: 0
Numerators of 1, 10/31, -1822/961, -56660/29791, 9939052/923521, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(10/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
-
Numerator/@HermiteH[Range[0, 20], 5/31] (* Harvey P. Dale, May 14 2011 *)
Table[31^n*HermiteH[n, 5/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
-
makelist(num(hermite(n, 5/31)), n, 0, 20); /* Bruno Berselli, Mar 28 2018 */
-
a(n)=numerator(polhermite(n, 5/31)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(10*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
A160304
Numerator of Hermite(n, 6/31).
Original entry on oeis.org
1, 12, -1778, -67464, 9442380, 631971792, -83157610296, -8285790028896, 1019373008575632, 139634783587212480, -15957496899294732576, -2875270503337760656512, 302870153404836108243648, 69949680729840145080716544, -6728117484215153259607190400
Offset: 0
Numerators of 1, 12/31, -1778/961, -67464/29791, 9442380/923521, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(12/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
-
Table[31^n*HermiteH[n, 6/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
-
makelist(num(hermite(n, 6/31)), n, 0, 20); /* Bruno Berselli, Mar 28 2018 */
-
a(n)=numerator(polhermite(n, 6/31)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(12*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
A160305
Numerator of Hermite(n, 7/31).
Original entry on oeis.org
1, 14, -1726, -77980, 8860396, 723555784, -75018624584, -9394306045264, 877780290519440, 156735773819251424, -12989542631935753184, -3194315169653112913856, 229904497949242113022144, 76892348044168785827484800, -4667900913141400434386502784
Offset: 0
Numerators of 1, 14/31, -1726/961, -77980/29791, 8860396/923521, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(14/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
-
Numerator[HermiteH[Range[0, 20], 7/31]] (* Harvey P. Dale, Apr 23 2016 *)
Table[31^n*HermiteH[n, 7/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
-
makelist(num(hermite(n, 7/31)), n, 0, 20); /* Bruno Berselli, Mar 28 2018 */
-
a(n)=numerator(polhermite(n, 7/31)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(14*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
A160306
Numerator of Hermite(n, 8/31).
Original entry on oeis.org
1, 16, -1666, -88160, 8195596, 808903616, -65817219704, -10381352014976, 719403241658000, 171134120448798976, -9706091347019300384, -3444495256578225124864, 150094259153430446720704, 81845346744175071427394560, -2440729611300811998925197184
Offset: 0
Numerators of 1, 16/31, -1666/961, -88160/29791, 8195596/923521, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(16/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
-
Table[31^n*HermiteH[n, 8/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
-
makelist(num(hermite(n, 8/31)), n, 0, 20); /* Bruno Berselli, Mar 28 2018 */
-
a(n)=numerator(polhermite(n, 8/31)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(16*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
Comments