cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A154245 a(n) = ( (4 + sqrt(7))^n - (4 - sqrt(7))^n )/(2*sqrt(7)).

Original entry on oeis.org

1, 8, 55, 368, 2449, 16280, 108199, 719072, 4778785, 31758632, 211059991, 1402652240, 9321678001, 61949553848, 411701328775, 2736064645568, 18183205205569, 120841059834440, 803079631825399, 5337067516093232
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

Keywords

Comments

Second binomial transform of A109115.
Lim_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(7) = 6.6457513110....

Crossrefs

Equals (A094432 without initial term 0)/3.
Cf. A010465 (decimal expansion of square root of 7), A109115.

Programs

  • GAP
    a:=[1,8];; for n in [3..30] do a[n]:=8*a[n-1]-9*a[n-2]; od; a; # G. C. Greubel, May 21 2019
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-7); S:=[ ((4+r)^n-(4-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
    
  • Magma
    I:=[1,8]; [n le 2 select I[n] else 8*Self(n-1)-9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 08 2016
    
  • Mathematica
    Table[Simplify[((4+Sqrt[7])^n -(4-Sqrt[7])^n)/(2*Sqrt[7])], {n, 30}] (* or *) LinearRecurrence[{8, -9},{1, 8}, 30] (* G. C. Greubel, Sep 07 2016 *)
    Rest@ CoefficientList[Series[x/(1 -8x +9x^2), {x, 0, 30}], x] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec( x/(1-8*x+9*x^2) ) \\ G. C. Greubel, May 21 2019
    
  • Sage
    [lucas_number1(n,8,9) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
    

Formula

From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 8*a(n-1) - 9*a(n-2) for n > 1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 8*x + 9*x^2). (End)
a(n) = b such that (3^(n-1)/2)*Integral_{x=0..Pi/2} (sin(n*x))/(4/3-cos(x)) dx = c + b*log(2). - Francesco Daddi, Aug 02 2011
E.g.f.: (1/sqrt(7))*exp(4*x)*sinh(sqrt(7)*x). - G. C. Greubel, Sep 07 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009

A171537 Decimal expansion of sqrt(3/7).

Original entry on oeis.org

6, 5, 4, 6, 5, 3, 6, 7, 0, 7, 0, 7, 9, 7, 7, 1, 4, 3, 7, 9, 8, 2, 9, 2, 4, 5, 6, 2, 4, 6, 8, 5, 8, 3, 5, 5, 5, 6, 9, 2, 0, 8, 0, 8, 2, 3, 9, 5, 4, 2, 4, 5, 5, 7, 5, 1, 5, 3, 2, 0, 3, 0, 3, 4, 1, 5, 2, 6, 6, 9, 1, 7, 9, 3, 5, 3, 9, 5, 8, 4, 0, 9, 4, 3, 4, 8, 0, 2, 2, 2, 7, 8, 4, 7, 7, 7, 8, 6, 1, 8, 1, 1, 0, 8, 5
Offset: 0

Views

Author

R. J. Mathar, Dec 11 2009

Keywords

Comments

The absolute value of the Clebsch-Gordan coupling coefficient = <2 3/2 ; -2 -1/2 | 7/2 -5/2>.

Examples

			sqrt(3/7) = 0.6546536707079771437982924562...
		

Programs

Formula

equals A002194/A010465 = 3/A010477.

A176322 Decimal expansion of sqrt(1365).

Original entry on oeis.org

3, 6, 9, 4, 5, 9, 0, 6, 4, 0, 3, 8, 2, 2, 3, 3, 1, 9, 9, 1, 6, 3, 5, 6, 1, 1, 5, 9, 9, 7, 9, 7, 1, 4, 2, 0, 5, 6, 5, 1, 5, 9, 7, 4, 2, 2, 3, 1, 7, 1, 5, 5, 8, 7, 4, 6, 3, 9, 0, 6, 4, 1, 8, 8, 8, 4, 9, 2, 6, 6, 0, 6, 6, 7, 2, 5, 1, 5, 9, 4, 7, 0, 2, 0, 9, 0, 3, 0, 4, 0, 6, 0, 5, 4, 4, 6, 5, 2, 9, 0, 3, 8, 1, 2, 5
Offset: 2

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of sqrt(1365) is (repeat 1, 17, 2, 17, 1, 72) preceded by 36.

Examples

			36.94590640382233199163...
		

Crossrefs

Cf. A002194 (sqrt(3)), A002163 (sqrt(5)), A010465 (sqrt(7)), A010470 (sqrt(13)).
Cf. A176321 ((35+sqrt(1365))/14).

Programs

  • Magma
    SetDefaultRealField(RealField(120)); Sqrt(1365); // G. C. Greubel, Nov 26 2019
    
  • Maple
    evalf( sqrt(1365), 120); # G. C. Greubel, Nov 26 2019
  • Mathematica
    RealDigits[Sqrt[1365],10,120][[1]] (* Harvey P. Dale, Oct 09 2017 *)
  • PARI
    default(realprecision, 120); sqrt(1365) \\ G. C. Greubel, Nov 26 2019
    
  • Sage
    numerical_approx(sqrt(1365), digits=120) # G. C. Greubel, Nov 26 2019

Formula

Equals sqrt(3)*sqrt(5)*sqrt(7)*sqrt(13).

A176443 Decimal expansion of sqrt(469).

Original entry on oeis.org

2, 1, 6, 5, 6, 4, 0, 7, 8, 2, 7, 7, 0, 7, 7, 1, 5, 2, 0, 1, 7, 8, 6, 2, 0, 1, 0, 8, 6, 7, 9, 1, 1, 7, 7, 2, 9, 7, 4, 4, 9, 3, 1, 7, 5, 3, 6, 7, 8, 6, 5, 7, 7, 8, 6, 4, 9, 6, 4, 1, 2, 7, 6, 4, 0, 9, 0, 9, 2, 7, 6, 7, 3, 7, 8, 4, 2, 2, 2, 6, 9, 5, 9, 7, 7, 9, 2, 3, 9, 8, 5, 8, 1, 7, 7, 3, 0, 4, 9, 6, 0, 2, 6, 3, 0
Offset: 2

Views

Author

Klaus Brockhaus, Apr 19 2010

Keywords

Comments

Continued fraction expansion of sqrt(469) is A040447.

Examples

			sqrt(469) = 21.65640782770771520178...
		

Crossrefs

Cf. A010465 (decimal expansion of sqrt(7)), A010519 (decimal expansion of sqrt(67)), A176442 (decimal expansion of (21+sqrt(469))/6), A040447.

Programs

  • Mathematica
    RealDigits[Sqrt[469],10,120][[1]] (* Harvey P. Dale, May 28 2025 *)

A242703 Decimal expansion of sqrt(7)/2.

Original entry on oeis.org

1, 3, 2, 2, 8, 7, 5, 6, 5, 5, 5, 3, 2, 2, 9, 5, 2, 9, 5, 2, 5, 0, 8, 0, 7, 8, 7, 6, 8, 1, 9, 6, 3, 0, 2, 1, 2, 8, 5, 5, 1, 2, 9, 5, 9, 1, 5, 4, 1, 2, 2, 5, 0, 9, 0, 1, 8, 4, 1, 6, 7, 2, 2, 9, 6, 0, 0, 5, 3, 4, 4, 1, 1, 6, 1, 5, 1, 4, 1, 8, 1, 3, 8, 8, 0, 1, 9, 6, 4, 4, 3, 2, 3, 7, 2, 7
Offset: 1

Views

Author

Alonso del Arte, May 20 2014

Keywords

Comments

Absolute value of the imaginary part of any of the nontrivial divisors of 2 in O_Q(sqrt(-7)).
The incircle of a triangle with sides of lengths 4, 5, 6 units respectively has a radius of sqrt(7)/2.
With a different offset, decimal expansion of 5 * sqrt(7).
From Wolfdieter Lang, Nov 18 2017: (Start)
In a regular hexagon inscribed in a circle with a radius of 1 unit the three distinct distances between any vertex and the middle of the sides are 1/2, sqrt(7)/2 and sqrt(13)/2.
The continued fraction expansion of sqrt(7)/2 is 1, repeat(3, 10, 3, 2). The convergents are given in A294972/A294973. (End)

Examples

			1.32287565553229529525...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[7]/2, 10, 100][[1]]
  • PARI
    { default(realprecision, 20080); x=sqrt(7)/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b242703.txt", n, " ", d)); } \\ Iain Fox, Nov 18 2017

Formula

(1/2 - sqrt(-7)/2)(1/2 + sqrt(-7)/2) = 2.
Equals A010465/2. - R. J. Mathar, Feb 23 2021

A023119 Signature sequence of sqrt(7) (arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i's is the signature of x).

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 5, 3, 6, 1, 4, 7, 2, 5, 8, 3, 6, 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6, 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6, 14, 1, 9, 4, 12, 7, 15, 2, 10, 5, 13, 8, 16, 3, 11, 6, 14, 1, 9, 17, 4, 12, 7, 15, 2, 10, 18, 5, 13, 8, 16, 3, 11, 19, 6, 14, 1, 9, 17, 4, 12, 20, 7, 15, 2
Offset: 1

Views

Author

Keywords

References

  • C. Kimberling, "Fractal Sequences and Interspersions", Ars Combinatoria, vol. 45 p 157 1997.

Crossrefs

Cf. A010465.

A176461 Decimal expansion of sqrt(105).

Original entry on oeis.org

1, 0, 2, 4, 6, 9, 5, 0, 7, 6, 5, 9, 5, 9, 5, 9, 8, 3, 8, 3, 2, 2, 1, 0, 3, 8, 6, 8, 0, 5, 2, 1, 0, 5, 1, 9, 9, 0, 7, 3, 5, 0, 3, 2, 6, 6, 3, 4, 5, 4, 8, 3, 2, 9, 2, 9, 5, 4, 1, 9, 7, 8, 4, 9, 9, 8, 9, 0, 3, 4, 7, 9, 8, 5, 7, 0, 5, 3, 5, 4, 0, 7, 2, 9, 2, 7, 2, 3, 1, 6, 2, 8, 3, 7, 8, 5, 4, 6, 7, 3, 6, 9, 5, 4, 4
Offset: 2

Views

Author

Klaus Brockhaus, Apr 20 2010

Keywords

Comments

Continued fraction expansion of sqrt(105) is A040094.

Examples

			sqrt(105) = 10.24695076595959838322...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[105],10,120][[1]] (* Harvey P. Dale, Aug 03 2016 *)

A178309 Decimal expansion of sqrt(25277).

Original entry on oeis.org

1, 5, 8, 9, 8, 7, 4, 2, 0, 8, 8, 6, 0, 5, 6, 2, 6, 5, 3, 7, 9, 0, 6, 0, 4, 7, 7, 1, 8, 2, 7, 6, 0, 6, 0, 3, 3, 6, 3, 9, 7, 6, 8, 1, 4, 7, 2, 6, 3, 2, 9, 8, 0, 6, 4, 2, 3, 2, 6, 0, 6, 5, 4, 7, 3, 8, 2, 6, 1, 8, 5, 4, 6, 5, 1, 1, 3, 7, 9, 6, 1, 5, 2, 8, 4, 7, 2, 3, 3, 7, 1, 7, 1, 7, 7, 6, 8, 5, 6, 9, 3, 2, 5, 2, 8
Offset: 3

Views

Author

Klaus Brockhaus, May 24 2010

Keywords

Comments

Continued fraction expansion of sqrt(25277) is 158 followed by (repeat 1, 78, 2, 78, 1, 316).
sqrt(25277) = sqrt(7)*sqrt(23)*sqrt(157).

Examples

			sqrt(25277) = 158.98742088605626537906...
		

Crossrefs

Cf. A010465 (decimal expansion of sqrt(7)), A010479 (decimal expansion of sqrt(23)), A178310 (decimal expansion of sqrt(157)), A178308 (decimal expansion of (111+sqrt(25277))/158).

Programs

  • Mathematica
    RealDigits[Sqrt[25277],10,120][[1]] (* Harvey P. Dale, Oct 12 2011 *)

A274520 a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(7).

Original entry on oeis.org

0, 2, 4, 20, 64, 248, 880, 3248, 11776, 43040, 156736, 571712, 2083840, 7597952, 27698944, 100985600, 368164864, 1342243328, 4893475840, 17840411648, 65041678336, 237125826560, 864501723136, 3151758405632, 11490527150080, 41891604733952, 152726372368384
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 26 2016

Keywords

Comments

Number of zeros in substitution system {0 -> 111, 1 -> 1001} at step n from initial string "1" (see example).

Examples

			Evolution from initial string "1": 1 -> 1001 -> 10011111111001 -> 1001111111100110011001100110011001100110011111111001 -> ...
Therefore, number of zeros at step n:
a(0) = 0;
a(1) = 2;
a(2) = 4;
a(3) = 20, etc.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 6}, {0, 2}, 27]
  • PARI
    a(n)=([0,1; 6,2]^n*[0;2])[1,1] \\ Charles R Greathouse IV, Jul 26 2016

Formula

O.g.f.: 2*x/(1 - 2*x - 6*x^2).
E.g.f.: 2*exp(x)*sinh(sqrt(7)*x)/sqrt(7).
Dirichlet g.f.: (PolyLog(s,1+sqrt(7)) - PolyLog(s,1-sqrt(7)))/sqrt(7), where PolyLog(s,x) is the polylogarithm function.
a(n) = 2*a(n-1) + 6*a(n-2).
a(n) = 2*A083099(n).
Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(7) = 1 + A010465.

A004569 Expansion of sqrt(7) in base 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A010465.

Programs

  • Magma
    d:= 7; m:=2; Prune(Reverse(IntegerToSequence(Isqrt(d*m^100), m))); // G. C. Greubel, Mar 26 2018
  • Maple
    convert(evalf(sqrt(7),100),binary,100); # Wesley Ivan Hurt, Jan 28 2017
  • Mathematica
    RealDigits[Sqrt[7],2,120][[1]] (* Harvey P. Dale, Jan 18 2012 *)
Previous Showing 11-20 of 45 results. Next