cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A175578 Decimal expansion of the sum over the inverse icosahedral numbers.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 5, 9, 6, 6, 8, 9, 9, 2, 5, 1, 8, 8, 7, 5, 7, 3, 9, 3, 7, 5, 7, 9, 0, 1, 5, 8, 7, 9, 6, 4, 5, 3, 5, 3, 8, 1, 1, 4, 1, 6, 4, 8, 5, 5, 0, 4, 9, 8, 0, 6, 0, 6, 1, 7, 0, 2, 6, 9, 2, 9, 8, 1, 9, 2, 6, 0, 3, 3, 6, 1, 5, 4, 2, 6, 6, 9, 5, 8, 2, 6, 0, 9, 2, 1, 0, 6, 8, 8, 8, 7, 7, 8, 1, 0, 7, 2, 6, 4, 7
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Defined by sum_{n>=1} 1/A006564(n) = 1/1 + 1/12 +1/48 + 1/124 +...
Equals gamma + Pi*sqrt(5/3)*tanh(Pi*sqrt(15)/10)/2 + Re psi( 1/2+i*sqrt(15)/10 ), where psi is the digamma function, i the imaginary unit, Pi = A000796, sqrt(15)=A010472, gamma=A001620.

Examples

			1.12356596689925188757393..
		

Crossrefs

Cf. A006564 (icosahedral numbers).
Cf. sums of inverses: A152623 (tetrahedral numbers), A002117 (cubes), A175577 (octahedral numbers), A295421 (dodecahedral numbers).

Programs

  • Maple
    Digits := 120 : gamma+ Psi(1/2+sqrt(15)*I/10)+sqrt(15)/6*Pi*tanh(Pi*sqrt(15)/10) ; evalf(Re(%)) ;
  • Mathematica
    N[EulerGamma + PolyGamma[1/2 + (I*Sqrt[15])/10] + (1/2)*Tanh[(Pi*Sqrt[15])/10]*Pi*Sqrt[5/3] // Re, 105] // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    Euler+Pi*sqrt(5/3)*tanh(Pi*sqrt(15)/10)/2+real(psi(1/2+ I*sqrt(15)/10)) \\ Charles R Greathouse IV, Jul 19 2013

A040011 Continued fraction for sqrt(15).

Original entry on oeis.org

3, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 313/990. - R. J. Mathar, Aug 22 2025

Examples

			3.872983346207416885179265399... = 3 + 1/(1 + 1/(6 + 1/(1 + 1/(6 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010472 (decimal expansion). A010687.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[15],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{3},120,{6,1}] (* Harvey P. Dale, Apr 14 2020 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 19000); x=contfrac(sqrt(15)); for (n=0, 20000, write("b040011.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2^e) = 6, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 5/2^s). (End)
G.f.: (3 + x + 3*x^2)/(1 - x^2). - Stefano Spezia, Jul 26 2025

A041023 Denominators of continued fraction convergents to sqrt(15).

Original entry on oeis.org

1, 1, 7, 8, 55, 63, 433, 496, 3409, 3905, 26839, 30744, 211303, 242047, 1663585, 1905632, 13097377, 15003009, 103115431, 118118440, 811826071, 929944511, 6391493137, 7321437648, 50320119025
Offset: 0

Views

Author

Keywords

Comments

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 6 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • Mathematica
    Denominator[NestList[(6/(6+#))&,0,60]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    a0[n_] := (-((-5+Sqrt[15])*(4+Sqrt[15])^n)+(4-Sqrt[15])^n*(5+Sqrt[15]))/10 // Simplify
    a1[n_] := (-(4-Sqrt[15])^n+(4+Sqrt[15])^n)/(2*Sqrt[15]) // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
    Convergents[Sqrt[15],30]//Denominator (* Harvey P. Dale, Aug 13 2016 *)

Formula

G.f.: (1+x-x^2)/(1-8*x^2+x^4). - Colin Barker, Jan 01 2012
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(6) + sqrt(10) )/2 and beta = ( sqrt(6) - sqrt(10) )/2 be the roots of the equation x^2 - sqrt(6)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = product {k = 1..floor((n-1)/2)} ( 6 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 6*a(2*n) + a(2*n - 1). (End)
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-((-5+sqrt(15))*(4+sqrt(15))^n)+(4-sqrt(15))^n*(5+sqrt(15)))/10.
a1(n) = (-(4-sqrt(15))^n+(4+sqrt(15))^n)/(2*sqrt(15)). (End)

A176104 Decimal expansion of sqrt(285).

Original entry on oeis.org

1, 6, 8, 8, 1, 9, 4, 3, 0, 1, 6, 1, 3, 4, 1, 3, 2, 1, 8, 3, 1, 1, 6, 8, 8, 9, 4, 0, 9, 5, 2, 2, 1, 0, 9, 9, 8, 8, 8, 4, 8, 4, 7, 7, 1, 5, 7, 6, 2, 4, 8, 5, 3, 9, 5, 2, 6, 4, 9, 8, 0, 3, 7, 2, 7, 9, 3, 2, 5, 9, 6, 1, 5, 0, 2, 9, 7, 8, 0, 8, 2, 2, 6, 5, 6, 4, 2, 5, 6, 9, 7, 4, 3, 9, 0, 3, 5, 8, 8, 4, 0, 7, 3, 3, 6
Offset: 2

Views

Author

Klaus Brockhaus, Apr 10 2010

Keywords

Comments

Continued fraction expansion of sqrt(285) is A040268.

Examples

			sqrt(285) = 16.88194301613413218311...
		

Crossrefs

Cf. A010472 (decimal expansion of sqrt(15)), A010475 (decimal expansion of sqrt(19)), A040268.

A377996 Decimal expansion of the dihedral angle, in radians, between triangular and square faces in a (small) rhombicosidodecahedron.

Original entry on oeis.org

2, 7, 7, 6, 7, 2, 8, 8, 2, 5, 4, 7, 6, 3, 1, 0, 0, 5, 6, 7, 3, 5, 2, 4, 5, 0, 5, 3, 3, 7, 2, 8, 4, 2, 5, 3, 6, 4, 9, 8, 9, 1, 6, 4, 4, 2, 3, 5, 1, 2, 4, 8, 9, 7, 5, 6, 2, 0, 4, 6, 9, 8, 4, 6, 5, 7, 6, 9, 0, 6, 9, 5, 6, 4, 5, 2, 8, 2, 5, 4, 2, 9, 2, 3, 0, 2, 9, 3, 1, 2
Offset: 1

Views

Author

Paolo Xausa, Nov 15 2024

Keywords

Comments

Also the dihedral angle, in radians, between square and hexagonal faces in a truncated icosidodecahedron (great rhombicosidodecahedron).

Examples

			2.7767288254763100567352450533728425364989164423512...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(Sqrt[3] + Sqrt[15])/6], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["Rhombicosidodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-(sqrt(3) + sqrt(15))/6) = arccos(-(A002194 + A010472)/6).

A165953 Decimal expansion of (5*sqrt(3) + sqrt(15))/(6*Pi).

Original entry on oeis.org

6, 6, 4, 9, 0, 8, 8, 9, 4, 2, 0, 5, 3, 2, 6, 6, 4, 3, 1, 1, 4, 4, 2, 8, 4, 4, 6, 7, 0, 8, 6, 3, 3, 7, 1, 6, 1, 6, 4, 8, 7, 6, 5, 8, 0, 5, 5, 5, 6, 9, 1, 9, 3, 8, 1, 0, 5, 7, 5, 9, 2, 6, 0, 5, 7, 2, 2, 9, 6, 4, 7, 1, 8, 1, 8, 7, 7, 3, 2, 5, 9, 7, 4, 9, 7, 0, 8, 9, 0, 0, 2, 6, 9, 2, 0, 9, 2, 5, 9, 8, 9, 8, 2, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, Oct 02 2009

Keywords

Comments

The ratio of the volume of a regular dodecahedron to the volume of the circumscribed sphere (which has circumradius a*(sqrt(3) + sqrt(15))/4 = a*(A002194 + A010472)/4, where a is the dodecahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165952, and A165954. A063723 shows the order of these by size.

Examples

			0.6649088942053266431144284467086337161648765805556919381057592605722964718...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(5*Sqrt[3]+Sqrt[15])/(6*Pi),10,120][[1]] (* Harvey P. Dale, Feb 16 2018 *)
  • PARI
    (5*sqrt(3)+sqrt(15))/(6*Pi)

Formula

Equals (5*A002194 + A010472)/(6*A000796).
Equals (5*A002194 + A010472)*A049541/6.
Equals (10*A010527 + A010472)*A049541/6.
Equals (5 + sqrt(5))/(2*Pi*sqrt(3)).
Equals (5 + A002163)*A049541*A020760/2.

A194398 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) < 0, where r=sqrt(15) and < > denotes fractional part.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93
Offset: 1

Views

Author

Clark Kimberling, Aug 24 2011

Keywords

Comments

See A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[15]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}];
    Flatten[Position[t1, 1]]       (* A194398 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 800}];
    Flatten[Position[t2, 1]]       (* A194399 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 800}];
    Flatten[Position[t3, 1]]       (* A194400 *)

A194399 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) = 0, where r=sqrt(15) and < > denotes fractional part.

Original entry on oeis.org

6, 8, 14, 16, 22, 24, 30, 32, 38, 40, 46, 48, 54, 56, 62, 70, 78, 86, 94, 102, 110, 118, 314, 322, 330, 338, 346, 354, 362, 370, 376, 378, 384, 386, 392, 394, 400, 402, 408, 410, 416, 418, 424, 426, 432, 434, 438, 442, 446, 450, 454, 458, 462, 466, 470
Offset: 1

Views

Author

Clark Kimberling, Aug 24 2011

Keywords

Comments

Every term is even; see A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[15]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}];
    Flatten[Position[t1, 1]]       (* A194398 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 800}];
    Flatten[Position[t2, 1]]       (* A194399 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 800}];
    Flatten[Position[t3, 1]]       (* A194400 *)

A194400 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) > 0, where r=sqrt(15) and < > denotes fractional part.

Original entry on oeis.org

7, 15, 23, 31, 39, 47, 55, 377, 385, 393, 401, 409, 417, 425, 433, 439, 440, 441, 447, 448, 449, 455, 456, 457, 463, 464, 465, 471, 472, 473, 479, 480, 481, 487, 488, 489, 495, 503, 511, 519, 527, 535, 543, 551
Offset: 1

Views

Author

Clark Kimberling, Aug 24 2011

Keywords

Comments

See A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[15]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}];
    Flatten[Position[t1, 1]]       (* A194398 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 800}];
    Flatten[Position[t2, 1]]       (* A194399 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 800}];
    Flatten[Position[t3, 1]]       (* A194400 *)

A020772 Decimal expansion of 1/sqrt(15).

Original entry on oeis.org

2, 5, 8, 1, 9, 8, 8, 8, 9, 7, 4, 7, 1, 6, 1, 1, 2, 5, 6, 7, 8, 6, 1, 7, 6, 9, 3, 3, 1, 8, 8, 2, 6, 6, 4, 0, 7, 2, 2, 1, 9, 4, 7, 8, 0, 3, 5, 2, 7, 7, 2, 7, 2, 1, 7, 7, 2, 5, 0, 4, 9, 1, 7, 7, 4, 0, 8, 9, 8, 8, 7, 2, 7, 9, 5, 7, 9, 8, 6, 0, 2, 2, 3, 4, 6, 1, 9, 1, 5, 8, 4, 5, 7, 2, 4, 4, 9, 0, 1
Offset: 0

Views

Author

Keywords

Comments

1/sqrt(15) = 0.258198889747161125678617693318826640722194780352772721772504917740898872796... [Vladimir Joseph Stephan Orlovsky, May 30 2010]

Programs

Formula

Equals 1/A010472 = A020760 * A020762. - R. J. Mathar, Nov 19 2024
Previous Showing 11-20 of 30 results. Next