cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A062172 Table T(n,k) by antidiagonals of n^(k-1) mod k [n,k > 0].

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 3, 1, 1, 0, 1, 2, 1, 0, 1, 0, 0, 1, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 0, 0, 1, 4, 3, 1, 5, 1, 3, 1, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 3, 7, 5, 1, 1, 1, 1, 1, 1, 0, 1, 8, 1, 4, 7, 0, 0, 2, 1, 0, 1, 0, 0, 1, 1, 3, 1, 5, 0, 7, 1, 3, 0, 3, 0, 1, 0
Offset: 1

Views

Author

Henry Bottomley, Jun 12 2001

Keywords

Examples

			T(5,3)=5^(3-1) mod 3=25 mod 3=1. Rows start (0,1,1,1,1,...), (0,0,1,0,1,...), (0,1,0,3,1...), (0,0,1,0,1,...), (0,1,1,1,0,...), ...
		

Crossrefs

Cf. A002997, A060154. Rows include A057427, A062173, A062174, A062175, A062176. Columns include A000004, A000035, A011655, A010684 with interleaved 0's, A011558, A010875. Diagonals include all the rows again and A000004 and A009001 unsigned.

A282124 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 430", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 3, 3, 15, 11, 63, 43, 255, 171, 1023, 683, 4095, 2731, 16383, 10923, 65535, 43691, 262143, 174763, 1048575, 699051, 4194303, 2796203, 16777215, 11184811, 67108863, 44739243, 268435455, 178956971, 1073741823, 715827883, 4294967295, 2863311531, 17179869183
Offset: 0

Views

Author

Robert Price, Feb 06 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 430; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i ,1, stages - 1}]

Formula

Conjectures from Colin Barker, Feb 07 2017: (Start)
a(n) = (-1 + 2*(-1)^n - (-1)^n*2^(1+n) + 2^(2+n)) / 3.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
G.f.: (1 + 3*x - 2*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
(End)
Conjectures from Paul Curtz, Jun 10 2019: (Start)
a(n) = A001045(n+1)*(period 2: repeat[1, 3]).
a(n+4) = a(n) + 10*A081631(n).
a(2*n+1) = 2^(2*n+2) -1.
a(n+2) = a(n) + A098646(n+1).
(End)

A284307 Permutation of the natural numbers partitioned into quadruples [4k-3, 4k, 4k-2, 4k-1], k > 0.

Original entry on oeis.org

1, 4, 2, 3, 5, 8, 6, 7, 9, 12, 10, 11, 13, 16, 14, 15, 17, 20, 18, 19, 21, 24, 22, 23, 25, 28, 26, 27, 29, 32, 30, 31, 33, 36, 34, 35, 37, 40, 38, 39, 41, 44, 42, 43, 45, 48, 46, 47, 49, 52, 50, 51, 53, 56, 54, 55, 57, 60, 58, 59, 61, 64, 62, 63, 65, 68, 66, 67
Offset: 1

Views

Author

Guenther Schrack, Mar 24 2017

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1, 2, 3, 4); swap the third and fourth element, then swap the second and third element; repeat for all quadruples.

Crossrefs

Inverse: A056699.
Subsequences:
elements with odd index: A042963(n), n > 0
elements with even index: A014601(A103889(n)), n > 0
odd elements: A005408(n-1), n > 0
indices of odd elements: A042948(n), n > 0
even elements: 2*A103889(n), n > 0
indices of even elements: A042964(n), n > 0
Sequence of fixed points: A016813(n-1), n > 0
Every fourth element starting at:
n=1: a(4n-3) = 4n-3 = A016813(n-1), n > 0
n=2: a(4n-2) = 4n = A008586(n), n > 0
n=3: a(4n-1) = 4n-2 = A016825(n-1), n > 0
n=4: a(4n) = 4n-1 = A004767(n-1), n > 0
Difference between pairs of elements:
a(2n+1)-a(2n-1) = A010684(n-1), n > 0
Compositions:
a(n) = A133256(A116966(n-1)), n > 0
a(A042948(n)) = A005408(n-1), n > 0
A067060(a(n)) = A092486(n), n > 0

Programs

  • MATLAB
    a = [1 4 2 3];
    max = (specify);
    for n = 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • Mathematica
    Table[n + ((-1)^n - (-1)^(n (n - 1)/2) (1 + 2 (-1)^n))/2, {n, 68}] (* Michael De Vlieger, Mar 28 2017 *)
    LinearRecurrence[{1,0,0,1,-1},{1,4,2,3,5},70] (* or *) {#[[1]],#[[4]], #[[2]],#[[3]]}&/@Partition[Range[70],4]//Flatten(* Harvey P. Dale, Sep 27 2017 *)
  • PARI
    for(n=1, 68, print1(n + ((-1)^n - (-1)^(n*(n - 1)/2)*(1 + 2*(-1)^n))/2,", ")) \\ Indranil Ghosh, Mar 29 2017

Formula

a(1)=1, a(2)=4, a(3)=2, a(4)=3, a(n) = a(n-4) + 4, n > 4.
O.g.f.: (x^4 + x^3 - 2*x^2 + 3x - 1)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^n - (-1)^(n*(n-1)/2)*(1 + 2*(-1)^n))/2.
a(n) = n + (-1)^n*(1 - (-1)^(n*(n-1)/2) - (i^n - (-i)^n))/2.
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5), n > 5.
First differences, periodic: (3, -2, 1, 2), repeat.
a(n) = (2*n - 3*cos(n*Pi/2) + cos(n*Pi) + sin(n*Pi/2))/2. - Wesley Ivan Hurt, Apr 01 2017

A346741 Irregular triangle read by rows which is constructed in row n replacing the first A000070(n-1) terms of A336811 with their divisors.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Jul 31 2021

Keywords

Comments

The terms in row n are also all parts of all partitions of n.
The terms of row n in nonincreasing order give the n-th row of A302246.
The terms of row n in nondecreasing order give the n-th row of A302247.
For further information about the correspondence divisor/part see A336811 and A338156.

Examples

			Triangle begins:
[1];
[1],[1, 2];
[1],[1, 2],[1, 3],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1],[1, 5],[1, 3],[1, 2],[1],[1];
...
Below the table shows the correspondence divisor/part.
|---|-----------------|-----|-------|---------|-----------|-------------|
| n |                 |  1  |   2   |    3    |     4     |      5      |
|---|-----------------|-----|-------|---------|-----------|-------------|
| P |                 |     |       |         |           |             |
| A |                 |     |       |         |           |             |
| R |                 |     |       |         |           |             |
| T |                 |     |       |         |           |  5          |
| I |                 |     |       |         |           |  3 2        |
| T |                 |     |       |         |  4        |  4 1        |
| I |                 |     |       |         |  2 2      |  2 2 1      |
| O |                 |     |       |  3      |  3 1      |  3 1 1      |
| N |                 |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| S |                 |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
----|-----------------|-----|-------|---------|-----------|-------------|
.
|---|-----------------|-----|-------|---------|-----------|-------------|
|   |         A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
| L |                 |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |
| I |         A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| N |                 |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| K |         A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
|   |                 |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
|   |         A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|---|-----------------|-----|-------|---------|-----------|-------------|
.
.   |-------|
.   |Section|
|---|-------|---------|-----|-------|---------|-----------|-------------|
|   |   1   | A000012 |  1  |  1    |  1      |  1        |  1          |
|   |-------|---------|-----|-------|---------|-----------|-------------|
|   |   2   | A000034 |     |  1 2  |  1 2    |  1 2      |  1 2        |
|   |-------|---------|-----|-------|---------|-----------|-------------|
| D |   3   | A010684 |     |       |  1   3  |  1   3    |  1   3      |
| I |       | A000012 |     |       |  1      |  1        |  1          |
| V |-------|---------|-----|-------|---------|-----------|-------------|
| I |   4   | A069705 |     |       |         |  1 2   4  |  1 2   4    |
| S |       | A000034 |     |       |         |  1 2      |  1 2        |
| O |       | A000012 |     |       |         |  1        |  1          |
| R |-------|---------|-----|-------|---------|-----------|-------------|
| S |   5   | A010686 |     |       |         |           |  1       5  |
|   |       | A010684 |     |       |         |           |  1   3      |
|   |       | A000034 |     |       |         |           |  1 2        |
|   |       | A000012 |     |       |         |           |  1          |
|   |       | A000012 |     |       |         |           |  1          |
|---|-------|---------|-----|-------|---------|-----------|-------------|
.
In the above table both the zone of partitions and the "Link" zone are the same zones as in the table of the example section of A338156, but here in the lower zone the divisors are ordered in accordance with the sections of the set of partitions of n.
The number of rows in the j-th section of the lower zone is equal to A000041(j-1).
The divisors of the j-th section are also the parts of the j-th section of the set of partitions of n.
		

Crossrefs

Another version of A338156.
Row n has length A006128(n).
The sum of row n is A066186(n).
The product of row n is A007870(n).
Row n lists the first n rows of A336812.
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).

A060589 a(n) = 2*(2^n-1)*3^(n-1).

Original entry on oeis.org

0, 2, 18, 126, 810, 5022, 30618, 185166, 1115370, 6705342, 40271418, 241746606, 1450833930, 8706066462, 52239587418, 313447090446, 1880711240490, 11284353536382, 67706379498618, 406239051832686, 2437436635519050, 14624626786683102, 87747781640805018
Offset: 0

Views

Author

Henry Bottomley, Apr 05 2001

Keywords

Comments

a(n)/3^n is the expected time to finish a random Tower of Hanoi problem with n disks using optimal moves.

Crossrefs

Programs

  • Magma
    [2*(2^n - 1)*3^(n - 1): n in [0..30]]; // Vincenzo Librandi, Jul 03 2018
  • Mathematica
    Table[2 (2^n - 1) 3^(n - 1), {n, 0, 50}] (* or *) LinearRecurrence[{9, -18}, {0, 2}, 40] (* Vincenzo Librandi, Jul 03 2018 *)
  • PARI
    a(n)={2*(2^n - 1)*3^(n - 1)} \\ Harry J. Smith, Jul 07 2009
    

Formula

a(n) = Sum_{j<2^n} j*A001316(j) = 6*a(n-1) + A008776(n-1) = 4*A000400(n-1) - A008776(n-1) = A000244(n)*A060590(n)/A010684(n).
G.f.: 2*x/((3*x-1)*(6*x-1)). [Colin Barker, Dec 26 2012]

Extensions

Corrected by T. D. Noe, Nov 07 2006

A204689 a(n) = n^n (mod 4).

Original entry on oeis.org

1, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Apart from a(0), the same as A109718. [Joerg Arndt, Sep 17 2013]
Periodic for n>0 with period 4 = A174824(4): repeat [1, 0, 3, 0].

Crossrefs

Programs

Formula

From Bruno Berselli, Jan 18 2012: (Start)
G.f.: (1+x+3x^3-x^4)/(1-x^4).
a(n) = (1-(-1)^n)*(2+i^(n+1))/2 with i=sqrt(-1), a(0)=1.
a(n) = A109718(n) for n>0. (End)
a(2k) = A000007(k), a(2k+1) = A010684(k). - Wesley Ivan Hurt, Jun 15 2016

A207607 Triangle of coefficients of polynomials v(n,x) jointly generated with A207606; see Formula section.

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 1, 9, 9, 2, 1, 14, 25, 13, 2, 1, 20, 55, 49, 17, 2, 1, 27, 105, 140, 81, 21, 2, 1, 35, 182, 336, 285, 121, 25, 2, 1, 44, 294, 714, 825, 506, 169, 29, 2, 1, 54, 450, 1386, 2079, 1716, 819, 225, 33, 2, 1, 65, 660, 2508, 4719, 5005, 3185, 1240, 289, 37, 2
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

Subtriangle of the triangle T(n,k) given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012

Examples

			First five rows:
  1;
  1,  2;
  1,  5,  2;
  1,  9,  9,  2;
  1, 14, 25, 13,  2;
Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  5,  2,  0;
  1,  9,  9,  2,  0;
  1, 14, 25, 13,  2,  0;
  1, 20, 55, 49, 17,  2,  0;
  ...
1 = 2*1 - 1, 20 = 2*14 + 1 - 9, 55 = 2*25 + 14 - 9, 49 = 2*13 + 25 - 2, 17 = 2*2 + 1 - 0, 2 = 2*0 + 2 - 0. - _Philippe Deléham_, Mar 03 2012
		

Crossrefs

Cf. A207606.

Programs

  • Maple
    A207607:= (n,k) -> `if`(k=1, 1, binomial(n+k-3, 2*k-2) + 2*binomial(n+k-3, 2*k-3) ); seq(seq(A207607(n, k), k = 1..n), n = 1..10); # G. C. Greubel, Mar 15 2020
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207606 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207607 *)
    (* Second program *)
    Table[If[k==1, 1, Binomial[n+k-3, 2*k-2] + 2*Binomial[n+k-3, 2*k-3]], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else x*u(n - 1, x) + (x + 1)*v(n - 1, x)
    def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
    
  • Sage
    def T(n, k):
        if k == 1: return 1
        else: return binomial(n+k-3, 2*k-2) + 2*binomial(n+k-3, 2*k-3)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 15 2020

Formula

u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = x*u(n-1,x) + (x+1)v(n-1,x), where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Mar 03 2012
G.f.: (1-x+y*x)/(1-(y+2)*x+x^2). - Philippe Deléham, Mar 03 2012
For n >= 1, Sum{k=0..n} T(n,k)*x^k = A000012(n), A001906(n), A001834(n-1), A055271(n-1), A038761(n-1), A056914(n-1) for x = 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Mar 03 2012
T(n,k) = C(n+k-1,2*k) + 2*C(n+k-1,2*k-1). where C is binomial. - Yuchun Ji, May 23 2019
T(n,k) = T(n-1,k) + A207606(n,k-1). - Yuchun Ji, May 28 2019
Sum_{k=1..n} T(n, k)*x^k = { 4*(-1)^(n-1)*A016921(n-1) (x=-4), 3*(-1)^(n-1) * A130815(n-1) (x=-3), 2*(-1)^(n-1)*A010684(n-1) (x=-2), A057079(n+1) (x=-1), 0 (x=0), A001906(n) = Fibonacci(2*n) (x=1), 2*A001834(n-1) (x=2), 3*A055271(n-1) (x=3), 4*A038761(n-1) (x=4) }. - G. C. Greubel, Mar 15 2020

A053438 Expansion of (1+x+2*x^3)/((1-x)*(1-x^2)).

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 39, 42, 43, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63, 66, 67, 70, 71, 74, 75, 78, 79, 82, 83, 86, 87, 90, 91, 94, 95, 98, 99, 102, 103, 106, 107, 110, 111, 114, 115, 118, 119, 122
Offset: 0

Views

Author

N. J. A. Sloane, Jan 12 2000

Keywords

Crossrefs

Cf. A010684 (first differences), A263511 (partial sums).

Programs

  • Magma
    I:=[2,3,6]; [1] cat [n le 3 select I[n] else Self(n-1) +Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, May 26 2018
  • Maple
    A053438 := proc(n)
        if n > 0 then
            2*n -(1+(-1)^n)/2 ;
        else
            1 ;
        end if
    end proc:
    seq(A053438(n),n=0..30) ; # R. J. Mathar, Oct 27 2020
  • Mathematica
    CoefficientList[Series[(1+x+2*x^3)/((1-x)*(1-x^2)), {x, 0, 50}], x] (* or *) Join[{1}, LinearRecurrence[{1,1,-1}, {2,3,6}, 50]] (* G. C. Greubel, May 26 2018 *)
  • PARI
    a(n)=abs(n\2*4+n%2*3-1) \\ Charles R Greathouse IV, Dec 08 2011
    

Formula

a(n) = 2*n -(1+(-1)^n)/2 if n>=1. - Frank Ellermann, Feb 12 2002
a(n) = A042964(n), n>0. - R. J. Mathar, Oct 13 2008
a(n) = A014601(n) - 1 for n>0. - Hugo Pfoertner, Oct 26 2020

A154890 Jacobsthal numbers A001045 alternatingly incremented by 3 and 5.

Original entry on oeis.org

3, 6, 4, 8, 8, 16, 24, 48, 88, 176, 344, 688, 1368, 2736, 5464, 10928, 21848, 43696, 87384, 174768, 349528, 699056, 1398104, 2796208, 5592408, 11184816, 22369624, 44739248, 89478488, 178956976, 357913944, 715827888, 1431655768, 2863311536, 5726623064
Offset: 0

Views

Author

Paul Curtz, Jan 17 2009

Keywords

Formula

a(2n+1) = 2*a(2n).
a(n) = A153643(n)+A010684(n).
a(n+2) = 4*A128209(n).
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3). G.f.: (3-11x^2)/((1-x)(1+x)(1-2x)). [R. J. Mathar, Jan 23 2009]

Extensions

Edited and extended by R. J. Mathar, Jan 23 2009

A203231 (n-1)-st elementary symmetric function of the first n terms of the periodic sequence (3,1,3,1,3,1,3,1,...).

Original entry on oeis.org

1, 4, 15, 24, 81, 108, 351, 432, 1377, 1620, 5103, 5832, 18225, 20412, 63423, 69984, 216513, 236196, 728271, 787320, 2421009, 2598156, 7971615, 8503056, 26040609, 27634932, 84499119, 89282088, 272629233, 286978140, 875283327, 918330048
Offset: 1

Views

Author

Clark Kimberling, Dec 30 2011

Keywords

Crossrefs

Cf. A010684, A203230, A120908 (bisection).

Programs

  • Mathematica
    r = {3, 1, 3, 1, 3, 1};
    s = Flatten[{r, r, r, r, r, r, r, r, r}];
    t[n_] := Part[s, Range[n]]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 32}]     (* A203231 *)

Formula

Conjecture: a(n) = 6*a(n-2)-9*a(n-4) with G.f. x*(1+4*x+9*x^2) / (-1+3*x^2)^2 . - R. J. Mathar, Oct 15 2013
Previous Showing 31-40 of 52 results. Next