cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 61 results. Next

A133070 a(n) = n^5 - n^3 - n^2.

Original entry on oeis.org

0, -1, 20, 207, 944, 2975, 7524, 16415, 32192, 58239, 98900, 159599, 246960, 368927, 534884, 755775, 1044224, 1414655, 1883412, 2468879, 3191600, 4074399, 5142500, 6423647, 7948224, 9749375, 11863124, 14328495, 17187632, 20485919, 24272100, 28598399, 33520640, 39098367, 45394964
Offset: 0

Views

Author

Omar E. Pol, Nov 01 2007

Keywords

Comments

Exponents are prime numbers in decreasing order.

Examples

			a(7)=16415 because 7^5=16807, 7^3=343, 7^2=49 and we can write 16807-343-49=16415.
		

Crossrefs

Programs

  • Magma
    [n^5-n^3-n^2: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010
    
  • Mathematica
    Table[n^5-n^3-n^2,{n,0,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,-1,20,207,944,2975},41] (* Harvey P. Dale, Jul 23 2011 *)
  • PARI
    for(n=0,50, print1(n^5 - n^3 - n^2, ", ")) \\ G. C. Greubel, Oct 20 2017

Formula

a(n) = n^5 - n^3 - n^2.
G.f.: x*(-1 +26*x + 72*x^2 + 22*x^3 + x^4)/(1-x)^6. - R. J. Mathar, Nov 14 2007
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6), with a(0)=0, a(1)=-1, a(2)=20, a(3)=207, a(4)=944, a(5)=2975. - Harvey P. Dale, Jul 23 2011

Extensions

More terms from Vincenzo Librandi, Dec 15 2010

A133071 a(n) = n^5 - n^3 + n^2.

Original entry on oeis.org

0, 1, 28, 225, 976, 3025, 7596, 16513, 32320, 58401, 99100, 159841, 247248, 369265, 535276, 756225, 1044736, 1415233, 1884060, 2469601, 3192400, 4075281, 5143468, 6424705, 7949376, 9750625, 11864476, 14329953, 17189200, 20487601, 24273900, 28600321, 33522688, 39100545, 45397276
Offset: 0

Views

Author

Omar E. Pol, Nov 01 2007

Keywords

Comments

Exponents are prime numbers in decreasing order.

Examples

			a(7)=16513 because 7^5=16807, 7^3=343, 7^2=49 and we can write 16807-343+49=16513.
		

Crossrefs

Programs

  • Magma
    [n^5-n^3+n^2: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010
    
  • Mathematica
    Table[n^5 - n^3 + n^2, {n,0,50}] (* G. C. Greubel, Oct 20 2017 *)
  • PARI
    for(n=0,50, print1(n^5 - n^3 + n^2, ", ")) \\ G. C. Greubel, Oct 20 2017

Formula

a(n) = n^5 - n^3 + n^2.
G.f.: x*(1 + 22*x + 72*x^2 + 26*x^3 - x^4)/(1-x)^6. - R. J. Mathar, Nov 14 2007

Extensions

More terms from Vincenzo Librandi, Dec 15 2010

A133072 a(n) = n^5 + n^3 - n^2.

Original entry on oeis.org

0, 1, 36, 261, 1072, 3225, 7956, 17101, 33216, 59697, 100900, 162261, 250416, 373321, 540372, 762525, 1052416, 1424481, 1895076, 2482597, 3207600, 4092921, 5163796, 6447981, 7975872, 9780625, 11898276, 14367861, 17231536, 20534697, 24326100, 28657981, 33586176, 39170241, 45473572
Offset: 0

Views

Author

Omar E. Pol, Nov 01 2007

Keywords

Comments

Exponents are the prime numbers in decreasing order.

Examples

			a(7)=17101 because 7^5=16807, 7^3=343, 7^2=49 and we can write 16807+343-49=17101.
		

Crossrefs

Programs

  • Magma
    [n^5+n^3-n^2: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010
    
  • Mathematica
    Table[n^5 + n^3 - n^2, {n, 0, 50}] (* G. C. Greubel, Oct 20 2017 *)
  • PARI
    for(n=0,50, print1(n^5 + n^3 - n^2, ", ")) \\ G. C. Greubel, Oct 20 2017

Formula

a(n) = n^5 + n^3 - n^2.
G.f.: x*(1 + 30*x + 60*x^2 + 26*x^3 + 3*x^4)/(1-x)^6. - R. J. Mathar, Nov 14 2007

Extensions

More terms from Vincenzo Librandi, Dec 15 2010

A133073 a(n) = n^5 + n^3 + n^2.

Original entry on oeis.org

0, 3, 44, 279, 1104, 3275, 8028, 17199, 33344, 59859, 101100, 162503, 250704, 373659, 540764, 762975, 1052928, 1425059, 1895724, 2483319, 3208400, 4093803, 5164764, 6449039, 7977024, 9781875, 11899628, 14369319, 17233104, 20536379, 24327900, 28659903, 33588224, 39172419, 45475884
Offset: 0

Views

Author

Omar E. Pol, Nov 01 2007

Keywords

Comments

Exponents are prime numbers in decreasing order.

Examples

			a(7) = 17199 because 7^5 = 16807, 7^3 = 343, 7^2 = 49 and we can write 16807 + 343 + 49 = 17199.
		

Crossrefs

Programs

  • Magma
    [n^5+n^3+n^2: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010
    
  • Mathematica
    Total[#^{5,3,2}]&/@Range[0,40]  (* Harvey P. Dale, Jan 18 2011 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,3,44,279,1104,3275},35] (* James C. McMahon, Mar 10 2025 *)
  • PARI
    for(n=0,50, print1(n^5 + n^3 + n^2, ", ")) \\ G. C. Greubel, Oct 20 2017

Formula

G.f.: x*(3 + 26*x + 60*x^2 + 30*x^3 + x^4)/(1-x)^6. - R. J. Mathar, Nov 14 2007
a(n) = n^2*(n^3 + n + 1). - Wesley Ivan Hurt, Mar 02 2023

Extensions

More terms from Vincenzo Librandi, Dec 15 2010

A270205 Number of 2 X 2 planar subsets in an n X n X n cube.

Original entry on oeis.org

0, 0, 6, 36, 108, 240, 450, 756, 1176, 1728, 2430, 3300, 4356, 5616, 7098, 8820, 10800, 13056, 15606, 18468, 21660, 25200, 29106, 33396, 38088, 43200, 48750, 54756, 61236, 68208, 75690, 83700, 92256
Offset: 0

Views

Author

Craig Knecht, Mar 13 2016

Keywords

Comments

William H. Press looked at the hybrid structure of a most-perfect magic square and the Hilbert space filling curve and thought it might be the "most uniform" way of putting the consecutive integers in a 2-d square. He thought a definition of "most uniform" would be useful.
Al Zimmermann suggested this: Start by defining the "non-uniformity of a distribution of integers among the cells of a square [or cube or hypercube]" to be the standard deviation of the sums of the 2 X 2 planar subsets. Then define a "most uniform distribution of integers" to be a distribution with the smallest non-uniformity. For both the most-perfect square and most-perfect cube the non-uniformity is 0 and so each is a most uniform distribution. (Of course, you'd want a better word for "non-uniformity". Skewness?) Perhaps use "2 X 2 planar subset" instead of "2 X 2 partition"?
Comment from Dwane Campbell: For cubes, the definition of compact is that all 2 X 2 X 2 subcubes add to the same sum. That definition also includes wrap around. Your most perfect space cube is compact. It has the additional constraint that each orthogonal plane is also compact. There are 64 2 X 2 X 2 subcubes that add to 260 and 192 2 X 2 subsquares that add to 130 in your cube. I did not think either result was possible. Congratulations!
The most-perfect order 4 cube and the reversible order 4 cube are the new findings to look at in the link section.
Most-perfect magic squares require every 2 X 2 cell block to have the same sum. This sequence looks at that same subset in the cube.
Most-perfect space is defined as a structure where all these 2 X 2 subsets have the same sum.
What structure provides the most uniform distribution of integers in a cube?
a(n+1) is the number of unit faces required to make an n X n X n cubic lattice. Number of unit edges required for the same is A059986(n). - Mohammed Yaseen, Aug 22 2021
a(n-3) is the maximum sigma irregularity over all maximal 3-degenerate graphs with n vertices. The extremal graphs are 3-stars (K_3 joined to n-3 independent vertices). (The sigma irregularity of a graph is the sum of the squares of the differences between the degrees over all edges of the graph.) - Allan Bickle, Jun 14 2023

Examples

			The 2 X 2 X 2 cube labeled with the integers 1 to 8 has the following six 2 X 2 planar subsets each containing 4 cells: 1,2,3,4; 5,6,7,8; 1,2,5,6; 3,4,7,8; 1,4,5,8; 2,3,6,7.
		

Crossrefs

Cf. A011379, A181617, A270205 (sigma irregularities of maximal k-degenerate graphs).

Programs

Formula

a(n) = 3*n^3 - 6*n^2 + 3*n.
From Wesley Ivan Hurt, Mar 13 2016: (Start)
G.f.: 6*x^2*(1+2*x)/(x-1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
E.g.f.: 3*x^2*(1+x)*exp(x). - G. C. Greubel, May 10 2016
a(n) = 6 * A002411(n-1) for n>=1. - Joerg Arndt, May 11 2016
a(n) = A118659((n-1)^3), n>1. - Mohammed Yaseen, Aug 22 2021
From Amiram Eldar, Jul 02 2023: (Start)
Sum_{n>=2} 1/a(n) = Pi^2/18 - 1/3.
Sum_{n>=2} (-1)^n/a(n) = Pi^2/36 - 2*log(2)/3 + 1/3. (End)

A153978 a(n) = n*(n-1)*(n+1)*(3*n-2)/12.

Original entry on oeis.org

0, 2, 14, 50, 130, 280, 532, 924, 1500, 2310, 3410, 4862, 6734, 9100, 12040, 15640, 19992, 25194, 31350, 38570, 46970, 56672, 67804, 80500, 94900, 111150, 129402, 149814, 172550, 197780, 225680, 256432, 290224, 327250, 367710, 411810, 459762
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A011379.
Antidiagonal sums of the convolution array A213819. - Clark Kimberling, Jul 04 2012

Crossrefs

Programs

  • Mathematica
    With[{r=Range[0,50]},Accumulate[r^2+r^3]] (* Harvey P. Dale, Jan 16 2011 *)
    Rest[CoefficientList[Series[-2 x^2 * (2 x + 1)/(x - 1)^5, {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 30 2014 *)
    LinearRecurrence[{5,-10,10,-5,1}, {0,2,14,50,130}, 25] (* G. C. Greubel, Sep 01 2016 *)
  • PARI
    concat(0, Vec(-2*x^2*(2*x+1)/(x-1)^5 + O(x^100))) \\ Colin Barker, Jun 28 2014
    
  • PARI
    a(n) = n*(n-1)*(n+1)*(3*n-2)/12 \\ Charles R Greathouse IV, Sep 01 2016

Formula

a(n) = 2 * A001296(n-1) = (n-1)*n*(n+1)*(3*n-2)/12 (n>0). - Bruno Berselli, Apr 21 2010
a(n) = Sum_{i=1..n-1} binomial(i+1,i)*i^2. - Enrique Pérez Herrero, Jun 28 2014
G.f.: 2*x^2*(2*x+1) / (1 - x)^5. - Colin Barker, Jun 28 2014
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - Vincenzo Librandi, Jun 30 2014
a(n) = Sum_{k=1..n-1}k*((n-1)*n/2 + k) for n > 1. - J. M. Bergot, Feb 16 2018
From Amiram Eldar, Aug 23 2022: (Start)
Sum_{n>=2} 1/a(n) = 141/5 - 9*sqrt(3)*Pi/5 - 81*log(3)/5.
Sum_{n>=2} (-1)^n/a(n) = 18*sqrt(3)*Pi/5 + 48*log(2)/5 - 129/5. (End)

Extensions

Edited by Bruno Berselli, Jun 15 2010
Simpler definition as suggested by Wesley Ivan Hurt, Jun 29 2014

A215190 T(n,k)=Number of arrays of n 0..k integers with no sum of consecutive elements equal to a disjoint adjacent sum of an equal number of elements.

Original entry on oeis.org

2, 3, 2, 4, 6, 2, 5, 12, 12, 0, 6, 20, 36, 18, 0, 7, 30, 80, 88, 30, 0, 8, 42, 150, 276, 216, 30, 0, 9, 56, 252, 664, 954, 440, 18, 0, 10, 72, 392, 1366, 2940, 2898, 896, 0, 0, 11, 90, 576, 2512, 7404, 11756, 8808, 1626, 0, 0, 12, 110, 810, 4264, 16092, 36864, 46972, 24014
Offset: 1

Views

Author

R. H. Hardin Aug 05 2012

Keywords

Comments

Table starts
.2..3....4......5.......6........7.........8..........9.........10........11
.2..6...12.....20......30.......42........56.........72.........90.......110
.2.12...36.....80.....150......252.......392........576........810......1100
.0.18...88....276.....664.....1366......2512.......4264.......6800.....10330
.0.30..216....954....2940.....7404.....16092......31560......57072.....96990
.0.30..440...2898...11756....36864.....95832.....219092.....452368....864810
.0.18..896...8808...46972...183438....570460....1520506....3584736...7709744
.0..0.1626..24014..172046...848802...3191034....9990182...27052236..65759590
.0..0.2980..65462..630456..3931086..17862744...65678336..204247760.561117076
.0..0.4692.160670.2139436.17086156..94691966..411561564.1477403080
.0..0.7214.394750.7274062.74389138.502572562.2581475090
Column 1 is zero for n>=4
Column 2 is zero for n>=8
Column 3 is zero for n>=51

Examples

			Some solutions for n=6 k=4
..1....4....0....0....0....0....4....3....0....3....1....4....3....3....1....2
..3....3....3....3....4....4....2....4....3....0....3....2....0....4....0....3
..2....2....4....0....0....3....0....0....1....4....1....4....2....2....3....0
..0....1....3....4....2....2....4....2....4....3....2....3....4....0....4....4
..4....2....0....2....0....4....3....3....3....0....1....4....0....3....1....0
..3....0....1....3....4....2....4....4....1....2....4....1....3....2....4....3
		

Crossrefs

Row 2 is A002378
Row 3 is A011379

A096038 Triangle T(n,m) = (3*n^2-3*m^2+5*m-4+n)/2 read by rows.

Original entry on oeis.org

1, 6, 4, 14, 12, 7, 25, 23, 18, 10, 39, 37, 32, 24, 13, 56, 54, 49, 41, 30, 16, 76, 74, 69, 61, 50, 36, 19, 99, 97, 92, 84, 73, 59, 42, 22, 125, 123, 118, 110, 99, 85, 68, 48, 25, 154, 152, 147, 139, 128, 114, 97, 77, 54, 28, 186, 184, 179, 171, 160, 146, 129, 109, 86, 60, 31
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Comments

The triangle is obtained by subtracting the triangle A094930 from
its square root (also described in A094930) and then dividing each element of column m through 3*m-1.
For the first three rows n=1 to 3 this yields for example:
4;.................2;............2......................1;
14,25;......minus..2,5;.......=..12,20;......->.divide..6,4;
30,65,64;..........2,5,8;........28,60,56;..............14;12,7;

Crossrefs

Programs

  • Python
    def A096038(n,m):
        return (3*n**2-3*m**2+5*m-4+n)//2
    print( [A096038(n,m) for n in range(20) for m in range(1,n+1)] )
    # R. J. Mathar, Oct 11 2009

Formula

T(n,1) = A095794(n).
T(n,n) = 3*n-2.
T(n,m) = A094930(n,m)/(3*m-1)-1.

Extensions

Edited, T(3,2) corrected, and extended by R. J. Mathar, Oct 11 2009

A212972 Number of triples (w,x,y) with all terms in {0,...,n} and w >= floor((x+y)/3).

Original entry on oeis.org

1, 8, 24, 53, 100, 168, 261, 384, 540, 733, 968, 1248, 1577, 1960, 2400, 2901, 3468, 4104, 4813, 5600, 6468, 7421, 8464, 9600, 10833, 12168, 13608, 15157, 16820, 18600, 20501, 22528, 24684, 26973, 29400, 31968, 34681, 37544, 40560, 43733
Offset: 0

Views

Author

Clark Kimberling, Jun 03 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w >= Floor[(x + y)/3], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212972 *)

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
G.f.: (1 + 5x + 3*x^2 + 3*x^3)/((1 + x + x^2)*(1-x)^4).
a(n) = (n+1)^3 - A212971(n).
From Ayoub Saber Rguez, Dec 11 2023: (Start)
a(n) = A011379(n+1) - A212973(n).
a(n) = (2*n^3 + 8*n^2 + 10*n + 4 - (((n+1) mod 3) mod 2))/3. (End)

Extensions

Name corrected by Ayoub Saber Rguez, Jan 09 2024

A212973 Number of triples (w,x,y) with all terms in {0,...,n} and w <= floor((x+y)/3).

Original entry on oeis.org

1, 4, 12, 27, 50, 84, 131, 192, 270, 367, 484, 624, 789, 980, 1200, 1451, 1734, 2052, 2407, 2800, 3234, 3711, 4232, 4800, 5417, 6084, 6804, 7579, 8410, 9300, 10251, 11264, 12342, 13487, 14700, 15984, 17341, 18772, 20280, 21867, 23534
Offset: 0

Views

Author

Clark Kimberling, Jun 03 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w <= Floor[(x + y)/3], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212973 *)
    LinearRecurrence[{3,-3,2,-3,3,-1},{1,4,12,27,50,84},50] (* Harvey P. Dale, Jan 24 2015 *)

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
G.f.: (1 + x + 3*x^2 + x^3)/((1+x+x^2)*(1-x)^4).
a(n) = (n+1)^3 - A212974(n).
From Ayoub Saber Rguez, Dec 11 2023: (Start)
a(n) = A011379(n+1) - A212972(n).
a(n) = (n^3 + 4*n^2 + 5*n + 2 + (((n+1) mod 3) mod 2))/3. (End)
Previous Showing 21-30 of 61 results. Next