cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A092504 a(n) = prime(n) + prime(n^2).

Original entry on oeis.org

4, 10, 28, 60, 108, 164, 244, 330, 442, 570, 692, 864, 1050, 1236, 1474, 1672, 1938, 2204, 2504, 2812, 3156, 3540, 3886, 4300, 4734, 5152, 5622, 6114, 6590, 7110, 7700, 8292, 8874, 9480, 10080, 10778, 11478, 12212, 12910, 13672, 14506, 15282, 16068
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 05 2004

Keywords

Examples

			a(1) = 4 because prime(1) = 2 and prime(1) = 2.
a(2) = 10 because prime(2) = 3 and prime(4) = 7.
a(3) = 28 because prime(3) = 5 and prime(9) = 23.
		

Crossrefs

Programs

Formula

a(n) = A000040(n) + A011757(n). - Elmo R. Oliveira, Mar 22 2023

Extensions

Corrected and extended by Robert G. Wilson v, Apr 08 2004

A243896 a(n) = prime(n^2+1).

Original entry on oeis.org

2, 3, 11, 29, 59, 101, 157, 229, 313, 421, 547, 673, 829, 1013, 1201, 1429, 1621, 1889, 2153, 2441, 2749, 3089, 3463, 3821, 4217, 4639, 5059, 5521, 6011, 6491, 7001, 7577, 8167, 8741, 9343, 9941, 10631, 11329, 12071, 12757, 13513, 14341, 15107, 15881
Offset: 0

Views

Author

Freimut Marschner, Jun 17 2014

Keywords

Comments

For n>1, the numbers prime(n^2-1), prime(n^2) and prime(n^2+1), that is, A243895(n), A001248(n) and a(n), constitute a triple of successive prime numbers.

Examples

			n = 4, n^2 = 16, n^2 + 1 = 17, prime(17) = 59.
		

Crossrefs

Cf. A000290 (squares n^2), A000040 (prime(n)), A001248 (prime(n)^2). A011757 (prime(n^2)), A055875 (prime(n^3)), A096327 (prime((prime(n)^2))), A096328 (prime(prime(n)^3)), A038580 (prime(prime(prime(n)))).

Programs

  • Mathematica
    Table[Prime[n^2+1],{n,0,50}] (* Harvey P. Dale, Dec 25 2022 *)

Formula

a(n) = prime(n^2 + 1) = prime(A000290(n) + 1) = prime(A002522(n)).

A296857 For any number n > 0, let f(n) be the function that associates k to the prime(k)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the arithmetic functions with nonnegative integer values and a finite number of nonzero values; let g be the inverse of f; a(n) = g(f(n) * f(n)) (where i * j denotes the Dirichlet convolution of i and j).

Original entry on oeis.org

1, 2, 7, 16, 23, 126, 53, 512, 2401, 1150, 97, 9072, 151, 5194, 27209, 65536, 227, 388962, 311, 230000, 133931, 23474, 419, 2612736, 279841, 51038, 40353607, 2036048, 541, 12244050, 661, 33554432, 571039, 131206, 1668811, 252047376, 827, 224542, 1447033
Offset: 1

Views

Author

Rémy Sigrist, Dec 21 2017

Keywords

Comments

This sequence is the main diagonal of A248601.
See A248601 for additional comments.
For any n > 0, gcd(2 * n, a(2 * n)) = 2 * n.

Examples

			For n = 12:
- f(12) = (2, 1, 0, 0, ...),
- f(12) * f(12) = (4, 4, 0, 1, 0, 0, ...),
- a(12) = prime(1)^4 * prime(2)^4 * prime(4) = 2^4 * 3^4 * 7 = 9072.
		

Crossrefs

Programs

  • PARI
    a(n) = my (f=factor(n), p=apply(primepi, f[,1]~)); prod(i=1, #p, prod(j=1, #p, prime(p[i]*p[j])^(f[i,2]*f[j,2])))

Formula

For any n > 0 and k >= 0:
- a(n) = A248601(n, n),
- A001221(a(n)) <= A001221(n)^2,
- A001222(a(n)) = A001222(n)^2,
- A055396(a(n)) = A055396(n)^2,
- A061395(a(n)) = A061395(n)^2,
- a(A000040(n)) = A011757(n),
- a(A000040(n)^k) = A011757(n)^(k^2).

A304037 If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^k_j), where pi() = A000720.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 4, 4, 5, 3, 6, 5, 5, 1, 7, 5, 8, 4, 6, 6, 9, 3, 9, 7, 8, 5, 10, 6, 11, 1, 7, 8, 7, 5, 12, 9, 8, 4, 13, 7, 14, 6, 7, 10, 15, 3, 16, 10, 9, 7, 16, 9, 8, 5, 10, 11, 17, 6, 18, 12, 8, 1, 9, 8, 19, 8, 11, 8, 20, 5, 21, 13, 11, 9, 9, 9, 22, 4, 16, 14, 23, 7, 10, 15, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Examples

			a(72) = 5 because 72 = 2^3*3^2 = prime(1)^3*prime(2)^2 and 1^3 + 2^2 = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (PrimePi[#[[1]]]^#[[2]]& /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 88}]

Formula

If gcd(u,v) = 1 then a(u*v) = a(u) + a(v).
a(p^k) = A000720(p)^k where p is a prime.
a(A002110(m)^k) = 1^k + 2^k + ... + m^k.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A038580(k)) = A006450(k).
a(A001248(k)) = a(A011757(k)) = A000290(k).
a(A030078(k)) = a(A055875(k)) = A000578(k).
a(A002110(k)) = a(A011756(k)) = A000217(k).
a(A061742(k)) = A000330(k).
a(A115964(k)) = A000537(k).
a(A080696(k)) = A007504(k).
a(A076954(k)) = A001923(k).

A067852 Numbers k that divide prime(k^2) - 1.

Original entry on oeis.org

1, 2, 4, 6, 10, 11, 18, 20, 32, 90, 129, 188, 244, 678, 688, 756, 1081, 1322, 1477, 19758, 21351, 29518, 43187, 49978, 50342, 95708, 182326, 248253
Offset: 1

Views

Author

Joseph L. Pe, Feb 15 2002

Keywords

Comments

a(29) > 3*10^5. - Donovan Johnson, Nov 15 2009
Any further terms are > 10^6. - Lucas A. Brown, Sep 27 2024

Examples

			6 divides prime(6^2)-1 = 150, so 6 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], Mod[Prime[ #^2] - 1, # ] == 0 &]
  • PARI
    isok(k) = !((prime(k^2)-1) % k); \\ Michel Marcus, Aug 15 2021

Extensions

a(20)-a(28) from Donovan Johnson, Nov 15 2009

A109789 a(n) = prime(1^3) + prime(2^3) + prime(3^3) + ... + prime(n^3).

Original entry on oeis.org

2, 21, 124, 435, 1126, 2447, 4756, 8427, 13946, 21865, 32822, 47575, 66978, 91787, 123106, 161979, 209636, 267195, 336226, 418025, 514162, 626453, 756526, 906243, 1077772, 1272815, 1493676, 1742527, 2021958, 2334541, 2682248, 3068341
Offset: 1

Views

Author

Jonathan Vos Post, Aug 14 2005

Keywords

Comments

Analogy with prime(1^2) + prime(2^2) + ... + prime(n^2) (A109724). If we take the cumulative sum of A055875 including the 0th value of 1, the 3rd value becomes prime(0^3) + prime(1^3) + prime(2^3) + prime(3^3) = 1 + 2 + 19 + 103 = 125 = 5^3.

Examples

			a(1) = 2 because prime(1^3) = prime(1) = 2;
a(2) = 21 because prime(1^3) + prime(2^3) = prime(1) + prime(8) = 2 + 19;
a(3) = 124 because prime(1^3) + prime(2^3) + prime(3^3) = prime(1) + prime(8) + prime(27) = 2 + 19 + 103;
a(4) = 435 because prime(1^3) + prime(2^3) = prime(1) + prime(8) + prime(27) + prime(64) = 2 + 19 + 103 + 311.
a(6) = 2 + 19 + 103 + 311 + 691 + 1321 = 2447 (which is prime).
a(28) = 2 + 19 + 103 + 311 + 691 + 1321 + 2309 + 3671 + 5519 + 7919 + 10957 + 14753 + 19403 + 24809 + 31319 + 38873 + 47657 + 57559 + 69031 + 81799 + 96137 + 112291 + 130073 + 149717 + 171529 + 195043 + 220861 + 248851 = 1742527 (which is prime).
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, prime(k^3)); \\ Michel Marcus, Apr 17 2021

Formula

Cumulative sums of A055875(n) for n>0.

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 14 2007

A161846 Numerator of the ratio (prime((n+1)^2) - prime(n^2))/prime(n).

Original entry on oeis.org

5, 16, 6, 44, 54, 76, 84, 108, 122, 120, 166, 182, 184, 234, 192, 260, 264, 294, 304, 342, 378, 342, 408, 426, 414, 468, 488, 474, 516, 576, 588, 576, 604, 590, 696, 694, 728, 694, 756, 828, 774, 776, 870, 862, 852, 1010, 922, 998, 916, 1020, 1032, 1110, 1104
Offset: 1

Views

Author

Daniel Tisdale, Jun 20 2009

Keywords

Comments

Note that prime(n^2) = A011757(n) and prime(n) = A000040(n).
Conjecture: the sequence of fractions (prime((n+1)^2) - prime(n^2)) / prime(n) converges to 4. There are several "heuristic demonstrations" but no proofs.

Examples

			The first few fractions are 5/2, 16/3, 6/1, 44/7, 54/11, ...= A161846/A161847.
		

Crossrefs

Cf. A000040, A011757, A161847 (denominators).

Programs

  • Maple
    A161846 := proc(n) ( ithprime((n+1)^2)-ithprime(n^2))/ithprime(n) ; numer(%) ; end: seq(A161846(n),n=1..25) ; # R. J. Mathar, Jun 22 2009
  • Mathematica
    Table[(Prime[(n+1)^2]-Prime[n^2])/Prime[n],{n,60}]//Numerator (* Harvey P. Dale, Oct 24 2017 *)
  • PARI
    a(n) = numerator((prime((n+1)^2) - prime(n^2))/prime(n)); \\ Michel Marcus, May 14 2020

Formula

a(n) = numerator((A011757(n+1) - A011757(n))/A000040(n)). - Petros Hadjicostas, May 13 2020

Extensions

Extended by Ray Chandler, May 06 2010
Various sections edited by Petros Hadjicostas, May 13 2020

A161847 Denominator of the ratio (prime((n+1)^2) - prime(n^2))/prime(n).

Original entry on oeis.org

2, 3, 1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
Offset: 1

Views

Author

Daniel Tisdale, Jun 20 2009

Keywords

Comments

Conjecture: the sequence (prime((n+1)^2) - prime(n^2))/prime(n) converges to 4.

Examples

			The first few fractions are 5/2, 16/3, 6/1, 44/7, 54/11, ... = A161846/A161847.
		

Crossrefs

Cf. A000040, A011757, A161846 (numerators).

Programs

  • PARI
    a(n) = denominator((prime((n+1)^2) - prime(n^2))/prime(n)); \\ Michel Marcus, May 14 2020

Formula

a(n) = denominator((A011757(n+1) - A011757(n))/A000040(n)). - Petros Hadjicostas, May 13 2020

Extensions

Keyword:frac added by R. J. Mathar, Jun 30 2009
Extended by Ray Chandler, May 06 2010
Various sections edited by Petros Hadjicostas, May 13 2020

A243892 a(n) = prime(k) with k = n^2 + prime(n)^2.

Original entry on oeis.org

11, 41, 139, 313, 839, 1259, 2273, 2953, 4493, 7417, 8689, 12659, 15881, 17837, 21683, 28097, 35401, 38321, 46993, 53353, 56909, 67499, 75277, 87539, 105167, 115061, 120431, 130817, 136559, 147881, 189127, 202493
Offset: 1

Views

Author

Freimut Marschner, Jun 14 2014

Keywords

Examples

			n = 1, prime(1^2+prime(1)^2) = prime(1 + 2^2) = prime(5) = 11.
n = 2, prime(2^2+prime(2)^2) = prime(4 + 3^2) = prime(13) = 41.
		

Crossrefs

Cf. A000290 (squares n^2), A000040 (prime(n)), A001248 (prime(n)^2), A106587 (n^2 + prime(n)^2).
Also A011757 is prime(n^2), A096327 is prime(prime(n)^2).

Formula

a(n) = prime((n^2 + prime(n)^2)) = prime(A106587(n)).

A243895 a(n) = prime(n^2-1).

Original entry on oeis.org

5, 19, 47, 89, 149, 223, 307, 409, 523, 659, 823, 997, 1187, 1423, 1613, 1877, 2141, 2423, 2731, 3079, 3457, 3797, 4201, 4621, 5039, 5507, 5987, 6473, 6991, 7561, 8147, 8731, 9337, 9929, 10613, 11317, 12043, 12739, 13487, 14323, 15091, 15859, 16741
Offset: 2

Views

Author

Freimut Marschner, Jun 17 2014

Keywords

Comments

The prime numbers prime(k-1), prime(k) = A001248 and prime(k+1) = A243896 with k = n^2 are building a triple of successive prime numbers. Remark: prime(n^2-1) is not defined for n=1.

Examples

			n = 3, n^2 = 9, n^2-1 = 8, prime(8) = 19.
		

Crossrefs

Cf. A000290 (squares n^2), A000040 (prime(n)), A001248 (prime(n)^2), A011757 (prime(n^2)), A055875 (prime(n^3)), A096327 (prime((prime(n)^2))), A096328 (prime(prime(n)^3)), A038580 (prime(prime(prime(n)))).

Programs

  • Mathematica
    Table[Prime[n^2-1],{n,2,50}] (* Harvey P. Dale, Jul 16 2025 *)

Formula

a(n) = prime(n^2-1) = prime(A000290(n) - 1) = prime(A005563(n-1)).
Previous Showing 11-20 of 37 results. Next