cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A011556 Number of regular triangulations of triangle X n-simplex.

Original entry on oeis.org

1, 5, 35, 530
Offset: 1

Views

Author

Keywords

References

  • Gelfand, Kapranov and Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, 1994, pp. 243-250.

Crossrefs

A345102 a(n) = 1 + 3 * Sum_{k=0..n-1} binomial(n,k) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 4, 37, 589, 13276, 386059, 13741057, 578451514, 28109736811, 1548565036789, 95365652263102, 6492034471389889, 484086370908869821, 39238367740327468444, 3435176518078688461297, 323029539924876486293089, 32472511993953383052630556, 3475005417300807667690138399
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + 3 Sum[Binomial[n, k] a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[Exp[x]/Sqrt[7 - 6 Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Sum[Binomial[n, k] StirlingS2[k, j] 3^j (2 j - 1)!!, {j, 0, k}], {k, 0, n}], {n, 0, 17}]
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(exp(x)/sqrt(7-6*exp(x)))) \\ Seiichi Manyama, Oct 20 2021

Formula

E.g.f.: exp(x) / sqrt(7 - 6 * exp(x)).

A292783 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/sqrt(1 - 2*k*x).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 12, 15, 0, 1, 4, 27, 120, 105, 0, 1, 5, 48, 405, 1680, 945, 0, 1, 6, 75, 960, 8505, 30240, 10395, 0, 1, 7, 108, 1875, 26880, 229635, 665280, 135135, 0, 1, 8, 147, 3240, 65625, 967680, 7577955, 17297280, 2027025, 0, 1, 9, 192, 5145, 136080, 2953125, 42577920, 295540245, 518918400, 34459425, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2017

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + k*x/1! + 3*k^2*x^2/2! + 15*k^3*x^3/3! + 105*k^4*x^4/4! + 945*k^5*x^5/5! + 10395*k^6*x^6/6! +
Square array begins:
1,    1,      1,       1,       1,        1,  ...
0,    1,      2,       3,       4,        5,  ...
0,    3,     12,      27,      48,       75,  ...
0,   15,    120,     405,     960,     1875,  ...
0,  105,   1680,    8505,   26880,    65625,  ...
0,  945,  30240,  229635,  967680,  2953125,  ...
		

Crossrefs

Columns k=0..4 give A000007, A001147, A001813, A011781, A144828.
Rows n=0.2 give A000012, A001477, A033428.
Main diagonal gives A292784.
Cf. A131182.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[1/Sqrt[1 - 2 k x], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-i k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

O.g.f. of column k: 1/(1 - k*x/(1 - 2*k*x/(1 - 3*k*x/(1 - 4*k*x/(1 - 5*k*x/(1 - ...)))))), a continued fraction.
E.g.f. of column k: 1/sqrt(1 - 2*k*x).
A(n,k) = k^n*A001147(n).

A069736 Total number of Eulerian circuits in labeled multigraphs with n edges.

Original entry on oeis.org

1, 2, 13, 150, 2541, 57330, 1623105, 55405350, 2216439225, 101738006370, 5271938032725, 304455567165750, 19391501988260325, 1350480167457671250, 102096314890336391625, 8327231070135771543750, 728877648485930118800625
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Cf. A011781.

Programs

  • Mathematica
    Table[(2n)!/(2^n n!)(3^(n+1)-1)/(2(n+1)),{n,0,20}] (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    x=xx+O(xx^33); Vec(serlaplace((sqrt(1-2*x)-sqrt(1-6*x))/(2*x))) \\ Michel Marcus, Dec 11 2014

Formula

a(n) = (2*n)!/(2^n*n!)(3^(n+1)-1)/(2*(n+1)).
E.g.f.: (sqrt(1-2*x)-sqrt(1-6*x))/(2*x).
From Sergei N. Gladkovskii, Jul 25 2012: (Start)
G.f.: 1 + 8*x/(G(0)-8*x); where G(k) = x*(k+1)*(2*k+1)*(9*3^k-1) + (k+2)*(3*3^k-1) - x*((k+2)^2)*(3*3^k-1)*(2*k+3)*(27*3^k-1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step).
G.f.: (3/2)*G(0) where G(k) = 1 - 1/(3*3^k - 27*x*(k+1)*(2*k+1)*9^k/(9*x*(2*k+1)*(k+1)*3^k - (k+2)/Q2)); (continued fraction, 3rd kind, 3-step).
E.g.f.: (sqrt(1-2*x) - sqrt(1-6*x))/(2*x) = G(0)/(2*x); where G(k) = 1 - 3^k/(1 - x*(2*k-1)/(x*(2*k-1) - 3^k*(k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step).
(End)
Previous Showing 11-14 of 14 results.