cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A113852 Numbers whose prime factors are raised to the seventh power.

Original entry on oeis.org

128, 2187, 78125, 279936, 823543, 10000000, 19487171, 62748517, 105413504, 170859375, 410338673, 893871739, 1801088541, 2494357888, 3404825447, 8031810176, 17249876309, 21870000000, 27512614111, 42618442977, 52523350144, 64339296875, 94931877133, 114415582592
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Crossrefs

Proper subset of A001015.
Nonunit terms of A329332 column 7 in ascending order.

Programs

  • Mathematica
    Select[Range@34^7, Union[Last /@ FactorInteger@# ] == {7} &] (* Robert G. Wilson v, Jan 26 2006 *)
    Select[Range[2, 34], SquareFreeQ]^7 (* Amiram Eldar, Oct 13 2020 *)
  • PARI
    allpwrfact(n,p) = /* All prime factors are raised to the power p */ { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A113852(n):
        def f(x): return int(n+1-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**7 # Chai Wah Wu, Feb 25 2025

Formula

From Amiram Eldar, Oct 13 2020: (Start)
a(n) = A005117(n+1)^7.
Sum_{n>=1} 1/a(n) = zeta(7)/zeta(14) - 1. (End)

Extensions

More terms from Robert G. Wilson v, Jan 26 2006

A010802 14th powers: a(n) = n^14.

Original entry on oeis.org

0, 1, 16384, 4782969, 268435456, 6103515625, 78364164096, 678223072849, 4398046511104, 22876792454961, 100000000000000, 379749833583241, 1283918464548864, 3937376385699289, 11112006825558016, 29192926025390625, 72057594037927936, 168377826559400929, 374813367582081024
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013672 (zeta(14)), A001015 (n^7).
Cf. A000290, (squares), A000578, (cubes), A000583, (4th powers), A000584, (5th powers), A008455 (11th powers).

Programs

Formula

Totally multiplicative with a(p) = p^14 for prime p. Multiplicative with a(p^e) = p^(14e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-14).
Sum_{n>=1} 1/a(n) = 2*Pi^14/18243225 = A013672. (End)
a(n) = A001015(n)^2. - Michel Marcus, Feb 28 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = 8191*zeta(14)/8192 = 8191*Pi^14/74724249600. - Amiram Eldar, Oct 08 2020

A161025 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 15.

Original entry on oeis.org

1, 16383, 2391484, 134209536, 1525878906, 39179682372, 113037178808, 1099444518912, 3812797945332, 24998474116998, 37974983358324, 320959957991424, 328114698808274, 1851888100411464, 3649114989636504
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^14 such that the quotient group Z^14 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 14 of A263950.

Programs

  • Maple
    A161025 := proc(n)
        add(numtheory[mobius](n/d)*d^14,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A161025(n)) ;
    end do: # R. J. Mathar, Mar 15 2016
  • Mathematica
    A161025[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(15-1)/EulerPhi[n]&]
    f[p_, e_] := p^(13*e - 13) * (p^14-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^13, d, if(ispower(d, 14), moebius(sqrtnint(d, 14))*sigma(n^13/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^14 - 1)*f[i,1]^(13*f[i,2] - 13)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_14(n)/J_1(n) where J_14 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(13e-13) * (p^14-1) / (p-1).
For squarefree n, a(n) = A000203(n^13). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^14, where c = (1/14) * Product_{p prime} (1 + (p^13-1)/((p-1)*p^14)) = 0.1388226555... .
Sum_{k>=1} 1/a(k) = zeta(13)*zeta(14) * Product_{p prime} (1 - 2/p^14 + 1/p^27) = 1.00006146517418... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^14). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A161139 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 16.

Original entry on oeis.org

1, 32767, 7174453, 536854528, 7629394531, 235085301451, 791260251657, 8795824586752, 34315186290957, 249992370597277, 417724816941565, 3851637578973184, 4265491084507563, 25927224666044919, 54736732481116543
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^15 such that the quotient group Z^15 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 15 of A263950.

Programs

  • Maple
    A161139 := proc(n)
        add(numtheory[mobius](n/d)*d^15,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A161139(n)) ;
    end do: # R. J. Mathar, Mar 15 2016
  • Mathematica
    A161139[n_] := DivisorSum[n, MoebiusMu[n/#]*#^(16 - 1)/EulerPhi[n] &]; Array[A161139,20] (* Enrique Pérez Herrero, Mar 02 2011 *)
    f[p_, e_] := p^(14*e - 14) * (p^15-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^14, d, if(ispower(d, 15), moebius(sqrtnint(d, 15))*sigma(n^14/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^15 - 1)*f[i,1]^(14*f[i,2] - 14)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_15(n)/J_1(n), where J_15 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(14e-14) * (p^15-1) / (p-1).
For squarefree n, a(n) = A000203(n^14). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^15, where c = (1/15) * Product_{p prime} (1 + (p^14-1)/((p-1)*p^15)) = 0.1295704557... .
Sum_{k>=1} 1/a(k) = zeta(14)*zeta(15) * Product_{p prime} (1 - 2/p^15 + 1/p^29) = 1.00003065989236... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^15). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A017689 Numerator of sum of -13th powers of divisors of n.

Original entry on oeis.org

1, 8193, 1594324, 67117057, 1220703126, 1088524711, 96889010408, 549822930945, 2541867422653, 5000610355659, 34522712143932, 26751583696117, 302875106592254, 99226457784093, 648732096885608, 4504149450301441, 9904578032905938, 6941839931265343, 42052983462257060
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017690 (denominator), A013671, A013672.

Programs

  • Magma
    [Numerator(DivisorSigma(13,n)/n^13): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Maple
    A017689 := proc(n)
        numtheory[sigma][-13](n) ;
        numer(%) ;
    end proc: # R. J. Mathar, Sep 21 2017
  • Mathematica
    Table[Numerator[DivisorSigma[13, n]/n^13], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 13)/n^13)) \\ G. C. Greubel, Nov 06 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017690(n) = zeta(13) (A013671).
Dirichlet g.f. of a(n)/A017690(n): zeta(s)*zeta(s+13).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017690(k) = zeta(14) (A013672). (End)

A017691 Numerator of sum of -14th powers of divisors of n.

Original entry on oeis.org

1, 16385, 4782970, 268451841, 6103515626, 39184481725, 678223072850, 4398314962945, 22876797237931, 10000610353201, 379749833583242, 213999516991295, 3937376385699290, 5556342524323625, 5838586426737844, 72061992352890881, 168377826559400930, 374836322743499435
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017692 (denominator), A013672, A013673.

Programs

  • Magma
    [Numerator(DivisorSigma(14,n)/n^14): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Table[Numerator[DivisorSigma[14, n]/n^14], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 14)/n^14)) \\ G. C. Greubel, Nov 06 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017692(n) = zeta(14) (A013672).
Dirichlet g.f. of a(n)/A017692(n): zeta(s)*zeta(s+14).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017692(k) = zeta(15) (A013673). (End)

A282597 Expansion of phi_{14, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 16386, 4782972, 268468228, 6103515630, 78373779192, 678223072856, 4398583447560, 22876806803877, 100012207113180, 379749833583252, 1284076017413616, 3937376385699302, 11113363271818416, 29192944359852360, 72066391204823056, 168377826559400946
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2017

Keywords

Comments

Multiplicative because A013961 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), A282548 (phi_{12, 1}), this sequence (phi_{14, 1}).
Cf. A282012 (E_4^4), A282287 (E_4*E_6^2), A282596 (E_2*E_4^2*E_6).
Cf. A013672.

Programs

  • Mathematica
    Table[n * DivisorSigma[13, n], {n, 0, 17}] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 13)) \\ Andrew Howroyd, Jul 25 2018

Formula

a(n) = n*A013961(n) for n > 0.
a(n) = (3*A282012(n) + 4*A282287(n) - 7*A282596(n))/144.
Sum_{k=1..n} a(k) ~ zeta(14) * n^15 / 15. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(13*e+13)-1)/(p^13-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-14). (End)

A161195 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 16.

Original entry on oeis.org

65535, 2147385345, 470177777355, 35182761492480, 499992370589085, 15406315230591285, 51855240592341495, 576434364292792320, 2248845733577866995, 16383250007092548195, 27375595878265462275, 252417068738007613440, 279538958223203141205, 1699140668489253766665
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(14*e - 14) * (p^15-1) / (p-1); a[1] = 65535; a[n_] := 65535* Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 65535 * prod(i = 1, #f~, (f[i,1]^15 - 1)*f[i,1]^(14*f[i,2] - 14)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

From Amiram Eldar, Nov 08 2022: (Start)
a(n) = 65535 * A161139(n).
Sum_{k=1..n} a(k) ~ c * n^15, where c = 4369 * Product_{p prime} (1 + (p^14-1)/((p-1)*p^15)) = 8491.399817... .
Sum_{k>=1} 1/a(k) = (zeta(14)*zeta(15)/65535) * Product_{p prime} (1 - 2/p^15 + 1/p^29) = 1.5259489736...*10^(-5). (End)

A161157 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 15.

Original entry on oeis.org

32767, 536821761, 78361756228, 4397643866112, 49998474112902, 1283800652283324, 3703889238001736, 36025498551189504, 124933950274693644, 819125001391673466, 1244326279702202508, 10516894943504990208, 10751334335850714158, 60680817386182440888
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(13*e - 13) * (p^14-1) / (p-1); a[1] = 32767; a[n_] := 32767 * Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 32767 * prod(i = 1, #f~, (f[i,1]^14 - 1)*f[i,1]^(13*f[i,2] - 13)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

From Amiram Eldar, Nov 08 2022: (Start)
a(n) = 32767 * A161025(n).
Sum_{k=1..n} a(k) ~ c * n^14, where c = (4681/2) * Product_{p prime} (1 + (p^13-1)/((p-1)*p^14)) = 4548.801953... .
Sum_{k>=1} 1/a(k) = (zeta(13)*zeta(14)/32767) * Product_{p prime} (1 - 2/p^14 + 1/p^27) = 3.05203853014...*10^(-5). (End)

A013690 Continued fraction for zeta(14).

Original entry on oeis.org

1, 16327, 36, 19, 2, 1, 35, 1, 4, 7, 5, 1, 1, 1, 3, 1, 2, 3, 2, 1, 3, 3, 1, 1, 2, 1, 3, 1, 1, 7, 1, 4, 7, 4, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 4, 9, 2, 2, 1, 23, 6, 1, 2, 1, 2, 1, 1, 10, 1, 19, 7, 1, 1, 42, 1, 15, 1, 1, 4, 1, 2, 2, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013672.
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696

Programs

  • Mathematica
    ContinuedFraction[Zeta[14],80] (* Harvey P. Dale, Jun 28 2014 *)

Extensions

Offset changed by Andrew Howroyd, Jul 08 2024
Previous Showing 11-20 of 21 results. Next