cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A046281 Prime numbers that are the sum of the first k lucky numbers, A046279(k), for some k.

Original entry on oeis.org

11, 401, 1259, 2039, 3041, 7349, 7949, 19249, 22397, 26981, 51487, 70177, 91757, 98909, 103801, 153529, 289559, 307067, 316031, 434113, 439441, 518159, 529987, 535937, 547957, 560113, 578603, 591067, 597353, 655601, 745141, 795937, 886819
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

See A046280 for the values of k.

Crossrefs

Formula

a(n) = A046279(A046280(n)). - Amiram Eldar, Nov 16 2019

Extensions

Offset corrected by Amiram Eldar, Nov 16 2019

A053789 a(n) = A020639(A053790(n)).

Original entry on oeis.org

2, 2, 2, 7, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 41, 2, 3, 2, 3, 2, 3, 2, 3, 2, 59, 2, 7, 2, 3, 2, 3, 2, 7, 2, 37, 2, 2, 5, 2, 2, 89, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 13, 2, 109, 2, 2, 17, 2, 2, 2, 7, 2, 7, 2, 2, 7, 2
Offset: 1

Views

Author

Enoch Haga, Mar 27 2000

Keywords

Examples

			a(4) = 7 because the sum of the first 8 primes is 77 and 7 is its least prime divisor.
		

Crossrefs

Programs

  • Maple
    N:= 2000: # to use primes <= N
    P:= select(isprime, [2, seq(i, i=3..N, 2)]):
    A053790:= remove(isprime, ListTools:-PartialSums(P)):
    map(t -> min(numtheory:-factorset(t)), A053790); # Robert Israel, Jan 29 2018

Extensions

Edited by N. J. A. Sloane, Mar 16 2008, following explication by R. J. Mathar, Feb 26 2008

A121248 Numbers k such that the sum of the first 2^k primes is a prime.

Original entry on oeis.org

0, 1, 2, 6, 9, 10, 32, 36, 55
Offset: 1

Views

Author

Alexander Adamchuk, Aug 22 2006

Keywords

Comments

Corresponding primes in the sums of the first 2^n primes or primes in A099825[n] are given in A113617[n] = {2,5,17,8893,868151,3875933,219554912086470964379,...}.

Crossrefs

Programs

  • Mathematica
    Do[f=Sum[Prime[k],{k,1,2^n}]; If[PrimeQ[f],Print[{n,f}]],{n,0,32}]

Formula

A099825(a(n)) = A113617(n). - Amiram Eldar, Jul 01 2024

Extensions

Edited by Robert G. Wilson v, Aug 26 2006
a(7)-a(9) from Amiram Eldar, Jul 01 2024

A122516 Primes in A046992.

Original entry on oeis.org

3, 5, 11, 19, 23, 37, 43, 61, 83, 107, 181, 271, 283, 349, 467, 499, 547, 563, 743, 821, 863, 947, 991, 1013, 1571, 2341, 2437, 2633, 2803, 2837, 2939, 3299, 3373, 3677, 3833, 4073, 4793, 4973, 5387, 5479, 5573, 6043, 6091, 6737, 7907, 8017, 8693, 8867
Offset: 1

Views

Author

Roger L. Bagula, Sep 16 2006

Keywords

Comments

A subset of A057447. - Alexander Adamchuk, Sep 17 2006

Crossrefs

Programs

  • Haskell
    a122516 n = a122516_list !! (n-1)
    a122516_list = filter ((== 1) . a010051) a046992_list
    -- Reinhard Zumkeller, Feb 25 2012
  • Mathematica
    Flatten[Table[If[PrimeQ[Sum[ PrimePi[n], {n, 1, m}]], Sum[PrimePi[n], {n, 1, m}], {}], {m, 1, 200}]]

Formula

a(n) = Prime[ A122933[n] ]. - Alexander Adamchuk, Sep 20 2006

Extensions

Edited by N. J. A. Sloane, Sep 17 2006
More terms from Alexander Adamchuk, Sep 17 2006
Definition corrected, Sep 30 2006

A154423 Continue with summing & priming the A154422 (Level 4) list to level 5.

Original entry on oeis.org

2, 50575480513, 1663807730918617976723, 14304824932873646803553, 28817336920092499216069, 20284632396728311969809131, 168804229342169123733371839, 909257309497199880752121319
Offset: 1

Views

Author

Michael J Crowe (michaelcrowe117(AT)btinternet.com), Jan 09 2009

Keywords

Comments

See comments on A153089.
Summed primes found after processing (probable) Prime[] :
2, @Prime[1]
50575480513, @Prime[4722]
1663807730918617976723, @Prime[1974210]
14304824932873646803553, @Prime[2903172]
28817336920092499216069, @Prime[3420082]
20284632396728311969809131, @Prime[15247238]
168804229342169123733371839, @Prime[22642082]
909257309497199880752121319, @Prime[33274714]
9026355522011136010570106131, @Prime[53094426]
12263815980529982423068511467, @Prime[57000046]
21387636949994500797850359181, @Prime[65006502]
56131334772184677703527026147, @Prime[78661050]
62292259347481056139884911863, @Prime[81244070]
83034816090925278171614867177, @Prime[85729684]
155030914145470518313682423747, @Prime[96915920]
197999545090257302363521955417, @Prime[101294198]
253698723331018987460955136741, @Prime[106154766]
425504333192275826687012761279, @Prime[122033702]
482627861344449877955168125963, @Prime[124661548]
589741242267992002144967999423, @Prime[129872416]
619685334968034352750914408883, @Prime[131898052]
721898204498044322321900684473, @Prime[134793368]
905024448001289513576258053853, @Prime[140868154]

Crossrefs

A000040(Level 1),A013918(Level 2),A153089(Level 3),A154422(Level 4),A154424(Level 6)

Programs

  • Mathematica
    lst2={}; s2=0; Do[s2=s2+Prime[n]; If[PrimeQ[s2], AppendTo[lst2, s2]], {n, 4000000}]; lst3={}; s3=0; Do[s3=s3+lst2[[n]];If[PrimeQ[s3], AppendTo[lst3, s3]], {n,1,Length[lst2]}]; lst3; lst4={}; s4=0; Do[s4=s4+lst3[[n]];If[PrimeQ[s4], AppendTo[lst4, s4]], {n,1,Length[lst3]}]; lst4; lst5={}; s5=0; Do[s5=s5+lst4[[n]];If[PrimeQ[s5], AppendTo[lst5, s5]], {n,1,Length[lst4]}]; lst5

A154424 Continue with summing & priming the A154423 (Level 5) list to level 6.

Original entry on oeis.org

2, 22388562459746799685433396747, 805356826229750685152751618123101, 689400380025917209087935611674203155791, 3105808024815442289202546027249327480961, 20662615055094927265669723508498824139849
Offset: 1

Views

Author

Michael J. Crowe (michaelcrowe117(AT)btinternet.com), Jan 09 2009

Keywords

Comments

See comments on A153089.
Summed primes found after processing (probable) Prime[] :
2, @Prime[1]
22388562459746799685433396747, @Prime[57000046]
805356826229750685152751618123101, @Prime[384411248]
???
Currently searched to (probable) Prime[10^9] using a NTL+C program using Miller-witness 10 trials. Checked summed primes with PrimeQ[].
From Michael J Crowe (michaelcrowe117(AT)btinternet.com), Mar 16 2009: (Start)
689400380025917209087935611674203155791, @Prime[4772152782]
3105808024815442289202546027249327480961, @Prime[6288823330]
20662615055094927265669723508498824139849, @Prime[8828698784]
(End)

Crossrefs

Cf. A000040 (Level 1), A013918 (Level 2), A153089 (Level 3), A154422 (Level 4), A154423 (Level 5).

Programs

  • Mathematica
    lst2={}; s2=0; Do[s2=s2+Prime[n]; If[PrimeQ[s2], AppendTo[lst2, s2]], {n, 10^9}]; lst3={}; s3=0; Do[s3=s3+lst2[[n]]; If[PrimeQ[s3], AppendTo[lst3, s3]], {n,1,Length[lst2]}]; lst3; lst4={}; s4=0; Do[s4=s4+lst3[[n]];If[PrimeQ[s4], AppendTo[lst4, s4]], {n,1,Length[lst3]}]; lst4; lst5={}; s5=0; Do[s5=s5+lst4[[n]];If[PrimeQ[s5], AppendTo[lst5, s5]], {n,1,Length[lst4]}]; lst5; lst6={}; s6=0; Do[s6=s6+lst5[[n]];If[PrimeQ[s6], AppendTo[lst6, s6]], {n,1,Length[lst5]}]; lst6

Extensions

a(4)-a(6) added by Michael J Crowe (michaelcrowe117(AT)btinternet.com), Mar 16 2009

A264885 Numbers in A007504 such that omega(a(n)) = Omega(a(n)) = 3.

Original entry on oeis.org

238, 874, 2914, 3266, 3638, 4438, 5117, 6601, 7982, 8582, 9854, 10191, 10538, 10887, 11966, 13101, 17283, 19113, 23069, 38238, 40313, 41741, 46191, 53342, 54998, 56690, 68341, 74139, 80189, 84341, 88585, 90763, 95165, 98534, 100838
Offset: 1

Views

Author

Keywords

Comments

The corresponding numbers of prime summands, k(n), are 13, 23, 39, 41, 43, 47, 50, 56, 61, 63, 67, 68, 69, 70, 73, 76, 86, 90, 98, 123, 126, 128, 134, 143, 145, 147, 160, 166, 172, 176, 180, 182, 186, 189, 191, 196, 197, 200, 215, 220, 222, 225, 229, 238, 241, 251, 252, 265, 266, 267, ....
Intersection of A007504 and A007304 (sphenic numbers). - Michel Marcus, Dec 15 2015

Examples

			For n = 1, k(n) = 13 and a(n) = A007504(13) = 238 = 2*7*17.
For n = 2, k(n) = 23 and a(n) = A007504(23) = 874 = 2*19*23.
For n = 3, k(n) = 39 and a(n) = A007504(39) = 2914 = 2*31*47.
For n = 4, k(n) = 41 and a(n) = A007504(41) = 3266 = 2*23*71.
For n = 5, k(n) = 43 and a(n) = A007504(43) = 3638 = 2*17*107.
For n = 6, k(n) = 47 and a(n) = A007504(47) = 4438 = 2*7*317.
Note that for each of the elements of the sequence, omega(a(n)) = Omega(a(n)) = 3, i.e., the number of prime factors of a(n) = the number of distinct prime factors of a(n) = 3.
		

Crossrefs

Programs

  • Maple
    N:= 10^4: # to use primes up to N
    select(t -> numtheory:-bigomega(t)=3 and numtheory:-issqrfree(t),
    ListTools:-PartialSums(select(isprime,[2,seq(i,i=3..N,2)]))); # Robert Israel, Dec 15 2015
  • Mathematica
    t = Accumulate@ Prime@ Range@ 300; Select[Range[2*10^5], And[MemberQ[t, #], PrimeNu@ # == PrimeOmega@ # == 3] &] (* Michael De Vlieger, Nov 27 2015, after Zak Seidov at A007504 *)
  • PARI
    lista(nn) = {my(s = 0); for (n=1, nn, s += prime(n); if ((omega(s) == 3) && (bigomega(s)==3), print1(s, ", ")););} \\ Michel Marcus, Nov 28 2015

A264887 Numbers in A007504 such that omega(a(n)) = Omega(a(n)) = 4.

Original entry on oeis.org

5830, 6870, 13490, 16401, 58406, 60146, 61910, 65534, 75130, 136114, 148827, 153178, 213538, 257358, 269074, 273054, 327198, 354102, 377310, 382038, 403611, 443685, 475323, 488774, 496905, 665130, 684510, 691026, 799846, 817563
Offset: 1

Views

Author

Keywords

Comments

Omega and omega are given in A001221 and A001222, respectively.
The corresponding numbers of prime summands, k(n), are 53, 57, 77, 84, 149, 151, 153, 157, 167, 219, 228, 231, 269, 293, 299, 301, 327, 339, 349, 351, 360, 376, 388, 393, 396, 453, 459, 461, 493, 498, ...
Intersection of A007504 and A046386 (products of four distinct primes). - Michel Marcus, Dec 15 2015

Examples

			For n = 1, k(n) = 53 and a(n) = A007504(53) = 5830 = 2*5*11*53.
For n = 2, k(n) = 57 and a(n) = A007504(57) = 6870 = 2*3*5*229.
For n = 3, k(n) = 77 and a(n) = A007504(77) = 13490 = 2*5*19*71.
For n = 4, k(n) = 84 and a(n) = A007504(84) = 16401 = 3*7*11*71.
For n = 5, k(n) = 149 and a(n) = A007504(149) = 58406 = 2*19*29*53.
For n = 6, k(n) = 151 and a(n) = A007504(151) = 60146 = 2*17*29*61.
Note that for each of the elements of the sequence, omega(a(n)) = Omega(a(n)) = 4, i.e., the number of prime factors of a(n) = the number of distinct prime factors of a(n) = 4.
		

Crossrefs

Programs

  • Mathematica
    t = Accumulate@ Prime@ Range@ 600; Select[t, PrimeNu@ # == PrimeOmega@ # == 4 &] (* Michael De Vlieger, Nov 27 2015, after Zak Seidov at A007504 *)
  • PARI
    lista(nn) = {my(s = 0); for (n=1, nn, s += prime(n); if ((omega(s) == 4) && (bigomega(s)==4), print1(s, ", ")););} \\ Michel Marcus, Nov 28 2015

A346706 Lesser members of twin primes which are the sum of the first k primes for some number k.

Original entry on oeis.org

5, 17, 41, 197, 281, 38921, 121631, 325019, 642869, 681257, 1005551, 1086557, 2327399, 4975457, 7584569, 7819787, 8130767, 8522159, 14848187, 17769377, 18615677, 19949537, 20144051, 21171191, 24845207, 33669047, 35166449, 56039957, 73479947, 82366769, 92731367
Offset: 1

Views

Author

Sebastian Sargenti, Jul 29 2021

Keywords

Examples

			5 = 2+3; 5 is a twin prime with 7.
17 = 2+3+5+7; 17 is a twin prime with 19.
41 = 2+3+5+7+11+13; 41 is a twin prime with 43.
197 = 2+3+5+7+11+13+17+19+23+29+31+37; 197 is a twin prime with 199.
		

Crossrefs

Intersection of A001359 and A013918.

Programs

  • Mathematica
    Select[Accumulate @ Select[Range[45000], PrimeQ], PrimeQ[#] && PrimeQ[# + 2] &] (* Amiram Eldar, Aug 01 2021 *)
  • PARI
    lista(nn) = {my(s=0); for (n=1, nn, s += prime(n); if (isprime(s) && isprime(s+2), print1(s, ", ")););} \\ Michel Marcus, Aug 21 2021
  • Python
    from itertools import accumulate
    from sympy import isprime, primerange
    list(filter(lambda p: isprime(p) and isprime(p+2), accumulate(primerange(2, 10000)))) # David Radcliffe, Aug 01 2021
    

Extensions

a(13)-a(31) from Jon E. Schoenfield, Jul 29 2021

A046286 Lucky numbers that are the sum of the first k primes for some k.

Original entry on oeis.org

129, 639, 2127, 2427, 4227, 5589, 6601, 10191, 11599, 17283, 18189, 19113, 22039, 24133, 25237, 34915, 43201, 50887, 54169, 62797, 74139, 109147, 148827, 166551, 169605, 236673, 307911, 329401, 374959, 393961, 403611, 418335, 486075, 513327
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

See A046285 for the values of k.

Crossrefs

Formula

a(n) = A007504(A046285(n)). - Amiram Eldar, Nov 16 2019

Extensions

More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 22 2006
Offset corrected by Amiram Eldar, Nov 16 2019
Previous Showing 21-30 of 47 results. Next