cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 47 results. Next

A115228 Nonsquarefree numbers n such that 2n+1 is also nonsquarefree (A013929).

Original entry on oeis.org

4, 12, 24, 40, 49, 60, 76, 84, 112, 121, 144, 148, 162, 171, 175, 180, 184, 212, 220, 256, 264, 292, 312, 328, 364, 387, 400, 412, 416, 420, 423, 436, 472, 480, 490, 508, 512, 544, 580, 612, 616, 625, 637, 652, 684, 688, 712, 722, 724, 760, 796, 808, 812
Offset: 1

Views

Author

Don Reble, Mar 05 2006

Keywords

Comments

For any distinct primes p, q with q odd, contains all n such that n == 0 (mod p^2) and n == -1/2 (mod q^2). - Robert Israel, Oct 21 2016

Examples

			24 is in the sequence because 2^2 divides 24 and 7^2 divides 24*2 + 1.
		

Crossrefs

Programs

  • Maple
    select(n -> not numtheory:-issqrfree(n) and not numtheory:-issqrfree(2*n+1), [$1..2000]); # Robert Israel, Oct 21 2016
  • Mathematica
    fQ[n_] := ! SquareFreeQ[n] && ! SquareFreeQ[2 n + 1]; Select[Range[1000], fQ] (* Robert G. Wilson v, Oct 21 2016 *)
  • PARI
    isok(n) = !issquarefree(n) && ! issquarefree(2*n+1); \\ Michel Marcus, Oct 22 2016

Formula

a(n) ~ n/(1 - 14/Pi^2 + 3*k/2 ) as n -> infinity, where k is the Feller-Tornier constant (A065474). - Robert Israel, Oct 21 2016

Extensions

Corrected by Zak Seidov, Oct 21 2016

A181966 Sum of the sizes of normalizers of all prime order cyclic subgroups of the symmetric group S_n.

Original entry on oeis.org

0, 2, 12, 72, 480, 4320, 35280, 322560, 3265920, 39916800, 479001600, 6706022400, 93405312000, 1482030950400, 24845812992000, 418455797760000, 7469435990016000, 147254595231744000, 2919482409811968000, 63255452212592640000, 1430546380807864320000
Offset: 1

Views

Author

Olivier Gérard, Apr 04 2012

Keywords

Crossrefs

Cf. A181954 for the number of such subgroups.

Programs

  • GAP
    List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( SymmetricGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( SymmetricGroup(n), Representative(x))) )); # Andrew Howroyd, Jul 30 2018
    
  • GAP
    a:=function(n) local total, perm, g, p, k;
      total:= 0; g:= SymmetricGroup(n);
      for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do
         perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1));
         total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p));
      od; od;
      return total;
    end; # Andrew Howroyd, Jul 30 2018
    
  • PARI
    a(n)={n!*sum(p=2, n, if(isprime(p), n\p))} \\ Andrew Howroyd, Jul 30 2018

Formula

a(n) = n! * A013939(n). - Andrew Howroyd, Jul 30 2018

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jul 30 2018

A303482 Numbers k such that the average of all distinct prime factors of all positive integers <= k is an integer.

Original entry on oeis.org

2, 5, 81, 10742, 10130527, 1041972864, 23292549600
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Comments

Numbers k such that A013939(k)|A024924(k).

Examples

			5 is in the sequence because the distinct prime factors of 2, 3, 4, and 5 are 2, 3, 2 and 5 respectively and their average (2 + 3 + 2 + 5) / 4 = 3 is an integer. - _David A. Corneth_, Apr 26 2018
		

Crossrefs

Programs

  • Mathematica
    s = t = 0; k = 2; lst = {}; While[k < 1000000000, p = #[[1]] & /@ FactorInteger@ k; s = s + Plus @@ p; t = t + Length@ p; If[ Mod[s, t] == 0, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Apr 26 2018 *)

Extensions

a(5) from Daniel Suteu, Apr 24 2018
a(6)-a(7) from Giovanni Resta, Apr 26 2018

A309912 a(n) = Product_{p prime, p <= n} floor(n/p).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 8, 12, 30, 30, 48, 48, 112, 210, 240, 240, 324, 324, 480, 840, 1848, 1848, 2304, 2880, 6240, 7020, 10080, 10080, 14400, 14400, 15360, 25344, 53856, 78540, 90720, 90720, 191520, 311220, 374400, 374400, 508032, 508032, 709632, 855360, 1788480, 1788480
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 22 2019

Keywords

Comments

Product of exponents of prime factorization of A048803 (squarefree factorials).

Examples

			A048803(14) = 1816214400 = 2^7 * 3^4 * 5^2 * 7^2 * 11 * 13 so a(14) = 7 * 4 * 2 * 2 * 1 * 1 = 112.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(floor(n/p), p=select(isprime, [$2..n])):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    Table[Product[Floor[n/Prime[k]], {k, 1, PrimePi[n]}], {n, 0, 47}]
  • Python
    from math import prod
    from sympy import primerange
    def A309912(n): return prod(n//p for p in primerange(n)) # Chai Wah Wu, Jun 02 2025

Formula

a(n) = Product_{k=1..A000720(n)} floor(n/A000040(k)).
a(n) = A005361(A048803(n)).

A322068 a(n) = (1/2)*Sum_{p prime <= n} floor(n/p) * floor(1 + n/p).

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 10, 11, 15, 18, 25, 26, 36, 37, 46, 54, 62, 63, 78, 79, 93, 103, 116, 117, 137, 142, 157, 166, 184, 185, 216, 217, 233, 247, 266, 278, 308, 309, 330, 346, 374, 375, 416, 417, 443, 467, 492, 493, 533, 540, 575, 595, 625, 626, 671, 687, 723, 745
Offset: 0

Views

Author

Daniel Suteu, Nov 25 2018

Keywords

Comments

Partial sums of A069359.

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(i*pi(floor(n/i)), i=1..n), n=0..60); # Ridouane Oudra, Oct 16 2019
  • Mathematica
    a[n_] := Module[{s=0, p=2}, While[p<=n, s += (Floor[n/p] * Floor[1 + n/p]); p=NextPrime[p]]; s]/2; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2018 *)
  • PARI
    a(n) = my(s=0); forprime(p=2, n, s+=(n\p)*(1+n\p)); s/2;
    
  • PARI
    a(n) = sum(k=1, sqrtint(n), k*(k+1) * (primepi(n\k) - primepi(n\(k+1))))/2 + sum(k=1, n\(sqrtint(n)+1), if(isprime(k), (n\k)*(1+n\k), 0))/2;

Formula

a(n) ~ A085548 * n*(n+1)/2.
a(n) = Sum_{p prime <= n} A000217(floor(n/p)).
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (pi(floor(n/k)) - pi(floor(n/(k+1)))) + Sum_{p prime <= floor(n/(1+floor(sqrt(n))))} floor(n/p)*floor(1+n/p))/2, where pi(x) is the prime-counting function (A000720).
a(n) = Sum_{i=1..n} i*pi(floor(n/i)), where pi(n) = A000720(n). - Ridouane Oudra, Oct 16 2019

A344672 a(n) = Sum_{primes p <=n} phi(floor(n/p)).

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 5, 5, 6, 8, 9, 7, 8, 12, 15, 13, 14, 14, 15, 13, 18, 24, 25, 17, 19, 27, 29, 23, 24, 22, 23, 23, 30, 38, 44, 28, 29, 41, 50, 38, 39, 35, 36, 34, 38, 50, 51, 37, 41, 51, 60, 52, 53, 49, 57, 49, 62, 78, 79, 43, 44, 66, 72, 58, 68, 68, 69, 65, 78, 78
Offset: 1

Views

Author

Michel Marcus, Jul 05 2021

Keywords

Crossrefs

Cf. A000010, A013939 (with k instead of phi(k)), A346111 (with sigma instead).
Cf. A317625.

Programs

  • Mathematica
    a[n_] := Plus @@ EulerPhi[Floor[n/Select[Range[n], PrimeQ]]]; Array[a, 100] (* Amiram Eldar, Jul 05 2021 *)
  • PARI
    a(n) = my(s=0); forprime(p=2, n, s+=eulerphi(n\p)); s;

A380314 Numerator of sum of reciprocals of all prime divisors of all positive integers <= n.

Original entry on oeis.org

0, 1, 5, 4, 23, 71, 527, 316, 117, 283, 3183, 5737, 75736, 170777, 186793, 100904, 1730383, 1295397, 24782713, 13522987, 42878411, 91488457, 2113934201, 1149922463, 234446350, 494634185, 169835681, 89698402, 2608690087, 84946052281, 2639797313941, 1370038779503, 1412581913773
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Comments

Prime divisors counted without multiplicity.

Examples

			0, 1/2, 5/6, 4/3, 23/15, 71/30, 527/210, 316/105, 117/35, 283/70, 3183/770, 5737/1155, 75736/15015, ...
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1) .. a(N)
    P:= select(isprime,[$1..N]):
    f:= proc(n) local k;
      numer(add(floor(n/P[k])/P[k],k=1..numtheory:-pi(n)))
    end proc:
    map(f, [$1..N]); # Robert Israel, Jan 26 2025
  • Mathematica
    Table[DivisorSum[n, 1/# &, PrimeQ[#] &], {n, 1, 33}] // Accumulate // Numerator
    Table[Sum[Floor[n/Prime[k]]/Prime[k], {k, 1, n}], {n, 1, 33}] // Numerator
    nmax = 33; CoefficientList[Series[1/(1 - x) Sum[x^Prime[k]/(Prime[k] (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
  • PARI
    a(n) = my(vp=primes(primepi(n))); numerator(sum(k=1, #vp, (n\vp[k])/vp[k])); \\ Michel Marcus, Jan 26 2025

Formula

G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^prime(k) / (prime(k)*(1 - x^prime(k))).
a(n) is the numerator of Sum_{k=1..pi(n)} floor(n/prime(k)) / prime(k).

A064182 Sum_{k <= 10^n} number of distinct primes dividing k (A001221).

Original entry on oeis.org

0, 11, 171, 2126, 24300, 266400, 2853708, 30130317, 315037281, 3271067968, 33787242719, 347589015681, 3564432632541, 36457601891708, 372096179850464, 3790896863469849, 38562555830676602, 391760068087338367, 3975397006170581823, 40066272402579605194
Offset: 0

Views

Author

Robert G. Wilson v, Sep 20 2001

Keywords

Comments

This is just a subsequence of A013939. - N. J. A. Sloane, Jul 16 2011

Crossrefs

Programs

  • Mathematica
    s = 0; k = 2; Do[ While[ k <= 10^n, s = s + PrimeNu@ k; k++ ]; Print[ s], {n, 8}]
  • PARI
    a(n)=sum(k=1,10^n,omega(k)) \\ Charles R Greathouse IV, Jul 13 2011
    
  • PARI
    a(n)=sum(k=1,10^n\2,primepi(10^n\k)) \\ Charles R Greathouse IV, Jul 13 2011

Formula

a(n) = Sum_{k, 1, limit}, PrimePi(10^n/k); which seems to be about 10^n/2.
On the contrary, I guess that a(n) ~ 10^n * log n. - Charles R Greathouse IV, Jul 13 2011
a(n) ~ 10^n * (0.26149721284764278375 + log(log(10^n))). - Hiroaki Yamanouchi, Jul 10 2014

Extensions

a(11)-a(13) from Giovanni Resta, Oct 26 2012
a(14)-a(16) from Hiroaki Yamanouchi, Jun 29 2014
a(17) from Hiroaki Yamanouchi, Jul 10 2014
a(18) from Henri Lifchitz, Aug 25 2014
a(19) from Henri Lifchitz, Dec 17 2017

A069470 a(n) = Sum_{k>=1} floor(n/(k*(k+1)/2)).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 9, 10, 11, 13, 15, 16, 19, 20, 21, 24, 25, 26, 29, 30, 32, 35, 36, 37, 40, 41, 42, 44, 46, 47, 52, 53, 54, 56, 57, 58, 62, 63, 64, 66, 68, 69, 73, 74, 75, 79, 80, 81, 84, 85, 87, 89, 90, 91, 94, 96, 98, 100, 101, 102, 107, 108, 109, 112, 113, 114, 118
Offset: 0

Views

Author

Henry Bottomley, Mar 25 2002

Keywords

Comments

The summation has floor(1/2 + sqrt(2*n)) = A002024(n) nonzero terms. - Enrique Pérez Herrero, Apr 05 2010

Examples

			a(11) = floor(11/1) + floor(11/3) + floor(11/6) + floor(11/10) + floor(11/15) + ... = 11 + 3 + 1 + 1 + 0 + ... = 16.
		

Crossrefs

Programs

  • Magma
    [(&+[Floor(n/(k*(k+1)/2)): k in [1..100]]): n in [0..30]]; // G. C. Greubel, May 23 2018
  • Mathematica
    A069470[n_]:=Sum[Floor[(2*n)/(k*(1 + k))], {k, 1, Floor[1/2 + Sqrt[2*n]]}] (* Enrique Pérez Herrero, Apr 05 2010 *)
  • PARI
    for(n=0, 30, print1(sum(k=1, 100, floor(n/(k*(k+1)/2))), ", ")) \\ G. C. Greubel, May 23 2018
    

Formula

a(n) = a(n-1) + A007862(n).
It appears that limit((sum(floor((1/2)*n/(k*(k+1))), k=1..n))/n, n=infinity) = 1/2. - Stephen Crowley, Aug 12 2009
From Enrique Pérez Herrero, Apr 05 2010: (Start)
a(n) <= floor((2*n^2)/(1 + n)) = A004275(n).
a(n) <= floor((2*n*floor((1 + 2*sqrt(2*n))/2))/(1+floor((1+2*sqrt(2*n))/2))). (End)
G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k*(k+1)/2)/(1 - x^(k*(k+1)/2)). - Ilya Gutkovskiy, Jul 11 2019

A095233 a(n) = a(n-1) + Sum(floor(n/p): p prime), a(1) = 1.

Original entry on oeis.org

1, 2, 4, 7, 11, 17, 24, 32, 41, 52, 64, 78, 93, 110, 129, 149, 170, 193, 217, 243, 271, 301, 332, 365, 399, 435, 472, 511, 551, 594, 638, 683, 730, 779, 830, 883, 937, 993, 1051, 1111, 1172, 1236, 1301, 1368, 1437, 1508, 1580, 1654, 1729, 1806, 1885
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2004

Keywords

Comments

a(n+1) - a(n) = A013939(n+1).

Crossrefs

Cf. A001221.

Programs

  • Mathematica
    A013939[n_] := Sum[Floor[n/Prime[k]], {k, 1, n}]; RecurrenceTable[{a[n] == a[n - 1] + A013939[n], a[1] == 1}, a, {n, 1, 50}] (* G. C. Greubel, May 20 2017 *)
Previous Showing 31-40 of 47 results. Next