A386788
a(n) = n^4*sigma_8(n).
Original entry on oeis.org
0, 1, 4112, 531522, 16843008, 244141250, 2185618464, 13841289602, 68988964864, 282472589763, 1003908820000, 3138428391362, 8952429298176, 23298085151042, 56915382843424, 129766445482500, 282578800148480, 582622237313282, 1161527289105456, 2213314919196482, 4112073026880000
Offset: 0
-
[0] cat [n^4*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 03 2025
-
Table[n^4*DivisorSigma[8, n], {n, 0, 30}]
nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 4083*x^k + 478271*x^(2*k) + 10187685*x^(3*k) + 66318474*x^(4*k) + 162512286*x^(5*k) + 162512286*x^(6*k) + 66318474*x^(7*k) + 10187685*x^(8*k) + 478271*x^(9*k) + 4083*x^(10*k) + x^(11*k))/(1 - x^k)^13, {k, 1, nmax}], {x, 0, nmax}], x]
-
a(n) = if (n, n^4*sigma(n,8), 0); \\ Michel Marcus, Aug 03 2025
A321812
Sum of 8th powers of odd divisors of n.
Original entry on oeis.org
1, 1, 6562, 1, 390626, 6562, 5764802, 1, 43053283, 390626, 214358882, 6562, 815730722, 5764802, 2563287812, 1, 6975757442, 43053283, 16983563042, 390626, 37828630724, 214358882, 78310985282, 6562, 152588281251, 815730722, 282472589764
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher.
-
a[n_] := DivisorSum[n, #^8 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
-
apply( A321812(n)=sigma(n>>valuation(n,2),8), [1..30]) \\ M. F. Hasler, Nov 26 2018
-
from sympy import divisor_sigma
def A321812(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),8)) # Chai Wah Wu, Jul 16 2022
A386778
a(n) = n^2*sigma_8(n).
Original entry on oeis.org
0, 1, 1028, 59058, 1052688, 9765650, 60711624, 282475298, 1077952576, 3487315923, 10039088200, 25937424722, 62169647904, 137858492018, 290384606344, 576739757700, 1103823438080, 2015993900738, 3584960768844, 6131066258162, 10280182567200, 16682426149284, 26663672614216
Offset: 0
-
[0] cat [n^2*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
-
Table[n^2*DivisorSigma[8, n], {n, 0, 30}]
nmax = 30; CoefficientList[Series[Sum[k^10*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]
A386782
a(n) = n^3*sigma_8(n).
Original entry on oeis.org
0, 1, 2056, 177174, 4210752, 48828250, 364269744, 1977327086, 8623620608, 31385843307, 100390882000, 285311671942, 746035774848, 1792160396234, 4065384488816, 8651096365500, 17661175009280, 34271896312546, 64529293839192, 116490258905078, 205603651344000, 350330949134964
Offset: 0
-
[0] cat [n^3*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
-
Table[n^3*DivisorSigma[8, n], {n, 0, 30}]
nmax = 30; CoefficientList[Series[Sum[k^11*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]
A068025
Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=8.
Original entry on oeis.org
1, 511, 9841, 174251, 488281, 6017605, 6725601, 50955971, 72636421, 276964061, 235794769, 2234070293, 883708281, 3698977205, 5148057541, 13910980083, 7411742281, 46982039533, 17927094321, 99343345101, 69493620405
Offset: 1
-
CIP8 = CycleIndexPolynomial[SymmetricGroup[8], Array[x, 8]]; a[n_] := CIP8 /. x[k_] -> DivisorSigma[k, n]; Array[a, 21] (* Jean-François Alcover, Nov 04 2016 *)
Original entry on oeis.org
0, 1, 27, 257, 1625, 6508, 24010, 65793, 177174, 391626, 893101, 1665644, 3398759, 5786411, 10531652, 16843009, 29065308, 42698935, 70764303, 100231882, 155608837, 215237342, 326294606, 426404460, 634767250, 819100920, 1162438641, 1480961067, 2084357107, 2538128133
Offset: 1
-
f[p_, e_] := (p^(8*e + 4) + 1)/(p^4 + 1); a[1] = 0; a[n_] := (Times @@ f @@@ FactorInteger[n] - 1) / 240; Array[a, 30] (* Amiram Eldar, Jan 08 2025 *)
-
a(n) = (sigma(n^2, 8)/sigma(n^2, 4)-1)/240
A055702
Numbers n such that n | Sigma_8(n) + Phi(n)^8.
Original entry on oeis.org
1, 2, 6, 86, 2033, 9617, 32052, 439369, 552012, 708292, 849660, 1869252, 2038140, 2083244, 2350089, 2569210, 2930460, 3875508, 4973090, 7248671, 13864156, 23500890, 25516264, 45711708, 57226685, 109512060, 112389732, 197121708, 240926532, 386807715, 395172531
Offset: 1
-
Do[If[Mod[DivisorSigma[8, n]+EulerPhi[n]^8, n]==0, Print[n]], {n, 1, 10^5}]
-
isok(n) = !((sigma(n, 8) + eulerphi(n)^8) % n); \\ Michel Marcus, Mar 02 2014
A158033
a(n) = sigma_(Fibonacci(n)) (n).
Original entry on oeis.org
1, 3, 10, 73, 3126, 1686434, 96889010408, 9223376434903384065, 278128389443693527934467475898331, 10000000000000000277555756156289135105943945819724042094
Offset: 1
-
a:= n-> numtheory[sigma][combinat[fibonacci](n)](n):
seq(a(n), n=1..10); # Alois P. Heinz, Feb 10 2020
-
Table[DivisorSigma[Fibonacci[n],n],{n,10}] (* Harvey P. Dale, Nov 24 2013 *)
-
a(n) = sigma(n, fibonacci(n)); \\ Michel Marcus, Feb 09 2020
-
[sigma(n,fibonacci(n))for n in range(1,11)] # Zerinvary Lajos, Jun 04 2009
Comments