cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A386788 a(n) = n^4*sigma_8(n).

Original entry on oeis.org

0, 1, 4112, 531522, 16843008, 244141250, 2185618464, 13841289602, 68988964864, 282472589763, 1003908820000, 3138428391362, 8952429298176, 23298085151042, 56915382843424, 129766445482500, 282578800148480, 582622237313282, 1161527289105456, 2213314919196482, 4112073026880000
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^4*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 03 2025
    
  • Mathematica
    Table[n^4*DivisorSigma[8, n], {n, 0, 30}]
    nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 4083*x^k + 478271*x^(2*k) + 10187685*x^(3*k) + 66318474*x^(4*k) + 162512286*x^(5*k) + 162512286*x^(6*k) + 66318474*x^(7*k) + 10187685*x^(8*k) + 478271*x^(9*k) + 4083*x^(10*k) + x^(11*k))/(1 - x^k)^13, {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    a(n) = if (n, n^4*sigma(n,8), 0); \\ Michel Marcus, Aug 03 2025

Formula

G.f.: Sum_{k>=1} k^4*x^k*(1 + 4083*x^k + 478271*x^(2*k) + 10187685*x^(3*k) + 66318474*x^(4*k) + 162512286*x^(5*k) + 162512286*x^(6*k) + 66318474*x^(7*k) + 10187685*x^(8*k) + 478271*x^(9*k) + 4083*x^(10*k) + x^(11*k))/(1 - x^k)^13.
a(n) = n^4*A013956(n).
Dirichlet g.f.: zeta(s-4)*zeta(s-12). - R. J. Mathar, Aug 03 2025

A321812 Sum of 8th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 6562, 1, 390626, 6562, 5764802, 1, 43053283, 390626, 214358882, 6562, 815730722, 5764802, 2563287812, 1, 6975757442, 43053283, 16983563042, 390626, 37828630724, 214358882, 78310985282, 6562, 152588281251, 815730722, 282472589764
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=8 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^8 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321812(n)=sigma(n>>valuation(n,2),8), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321812(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),8)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013956(A000265(n)) = sigma_8(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^8*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(8*e+8)-1)/(p^8-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(9)/18 = 0.0556671... . (End)

A386778 a(n) = n^2*sigma_8(n).

Original entry on oeis.org

0, 1, 1028, 59058, 1052688, 9765650, 60711624, 282475298, 1077952576, 3487315923, 10039088200, 25937424722, 62169647904, 137858492018, 290384606344, 576739757700, 1103823438080, 2015993900738, 3584960768844, 6131066258162, 10280182567200, 16682426149284, 26663672614216
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^2*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
  • Mathematica
    Table[n^2*DivisorSigma[8, n], {n, 0, 30}]
    nmax = 30; CoefficientList[Series[Sum[k^10*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^10*x^k*(1 + x^k)/(1 - x^k)^3.
a(n) = n^2*A013956(n).
Dirichlet g.f.: zeta(s-2)*zeta(s-10). - R. J. Mathar, Aug 03 2025

A386782 a(n) = n^3*sigma_8(n).

Original entry on oeis.org

0, 1, 2056, 177174, 4210752, 48828250, 364269744, 1977327086, 8623620608, 31385843307, 100390882000, 285311671942, 746035774848, 1792160396234, 4065384488816, 8651096365500, 17661175009280, 34271896312546, 64529293839192, 116490258905078, 205603651344000, 350330949134964
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^3*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
  • Mathematica
    Table[n^3*DivisorSigma[8, n], {n, 0, 30}]
    nmax = 30; CoefficientList[Series[Sum[k^11*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^11*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4.
a(n) = n^3*A013956(n).
Dirichlet g.f.: zeta(s-3)*zeta(s-11). - R. J. Mathar, Aug 03 2025

A068025 Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=8.

Original entry on oeis.org

1, 511, 9841, 174251, 488281, 6017605, 6725601, 50955971, 72636421, 276964061, 235794769, 2234070293, 883708281, 3698977205, 5148057541, 13910980083, 7411742281, 46982039533, 17927094321, 99343345101, 69493620405
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CIP8 = CycleIndexPolynomial[SymmetricGroup[8], Array[x, 8]]; a[n_] := CIP8 /. x[k_] -> DivisorSigma[k, n]; Array[a, 21] (* Jean-François Alcover, Nov 04 2016 *)

Formula

1/8!*(sigma[1](n)^8 + 28*sigma[1](n)^6*sigma[2](n) + 112*sigma[1](n)^5*sigma[3](n) + 210*sigma[1](n)^4*sigma[2](n)^2 + 420*sigma[1](n)^4*sigma[4](n) + 1120*sigma[1](n)^3*sigma[2](n)*sigma[3](n) + 420*sigma[1](n)^2*sigma[2](n)^3 + 1344*sigma[1](n)^3*sigma[5](n) + 2520*sigma[1](n)^2*sigma[2](n)*sigma[4](n) + 1120*sigma[1](n)^2*sigma[3](n)^2 + 1680*sigma[1](n)*sigma[2](n)^2*sigma[3](n) + 105*sigma[2](n)^4 + 3360*sigma[1](n)^2*sigma[6](n) + 4032*sigma[1](n)*sigma[2](n)*sigma[5](n) + 3360*sigma[1](n)*sigma[3](n)*sigma[4](n) + 1260*sigma[2](n)^2*sigma[4](n) + 1120*sigma[2](n)*sigma[3](n)^2 + 5760*sigma[7](n)*sigma[1](n) + 3360*sigma[2](n)*sigma[6](n) + 2688*sigma[3](n)*sigma[5](n) + 1260*sigma[4](n)^2 + 5040*sigma[8](n)).

A373039 a(n) = (A372966(n) - 1)/240.

Original entry on oeis.org

0, 1, 27, 257, 1625, 6508, 24010, 65793, 177174, 391626, 893101, 1665644, 3398759, 5786411, 10531652, 16843009, 29065308, 42698935, 70764303, 100231882, 155608837, 215237342, 326294606, 426404460, 634767250, 819100920, 1162438641, 1480961067, 2084357107, 2538128133
Offset: 1

Views

Author

Hugo Pfoertner, May 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(8*e + 4) + 1)/(p^4 + 1); a[1] = 0; a[n_] := (Times @@ f @@@ FactorInteger[n] - 1) / 240; Array[a, 30] (* Amiram Eldar, Jan 08 2025 *)
  • PARI
    a(n) = (sigma(n^2, 8)/sigma(n^2, 4)-1)/240

Formula

From Amiram Eldar, Jan 08 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-8)/zeta(s-4) - 1)/240.
Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(9)/(2160*zeta(5)) = 0.000447372... . (End)

A055702 Numbers n such that n | Sigma_8(n) + Phi(n)^8.

Original entry on oeis.org

1, 2, 6, 86, 2033, 9617, 32052, 439369, 552012, 708292, 849660, 1869252, 2038140, 2083244, 2350089, 2569210, 2930460, 3875508, 4973090, 7248671, 13864156, 23500890, 25516264, 45711708, 57226685, 109512060, 112389732, 197121708, 240926532, 386807715, 395172531
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_8(n) is the sum of the 8th powers of the divisors of n (A013956).

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[8, n]+EulerPhi[n]^8, n]==0, Print[n]], {n, 1, 10^5}]
  • PARI
    isok(n) = !((sigma(n, 8) + eulerphi(n)^8) % n); \\ Michel Marcus, Mar 02 2014

Extensions

More terms from Michel Marcus, Mar 02 2014

A158033 a(n) = sigma_(Fibonacci(n)) (n).

Original entry on oeis.org

1, 3, 10, 73, 3126, 1686434, 96889010408, 9223376434903384065, 278128389443693527934467475898331, 10000000000000000277555756156289135105943945819724042094
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> numtheory[sigma][combinat[fibonacci](n)](n):
    seq(a(n), n=1..10);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    Table[DivisorSigma[Fibonacci[n],n],{n,10}] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    a(n) = sigma(n, fibonacci(n)); \\ Michel Marcus, Feb 09 2020
  • Sage
    [sigma(n,fibonacci(n))for n in range(1,11)] # Zerinvary Lajos, Jun 04 2009
    

Extensions

Name edited by Michel Marcus, Feb 09 2020
Previous Showing 11-18 of 18 results.