cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A172064 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=7.

Original entry on oeis.org

1, 8, 46, 230, 1068, 4744, 20476, 86662, 361711, 1494384, 6126818, 24972326, 101320712, 409609664, 1651162688, 6640469816, 26655382802, 106830738224, 427612715516, 1709790470780, 6830461107736, 27266848437608
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 7th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.
Apparently the number of peaks in all Dyck paths of semilength n+7 that are 5 steps higher than the preceding peak. - David Scambler, Apr 22 2013

Examples

			a(4) = C(15,4) - C(14,3) + C(13,2) - C(12,1) + C(11,0) = 7*13*15 - 14*13*2 + 78 - 12 + 1 = 1068.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172065 (k=8), A172066 (k=9), A172067 (k=10).

Programs

  • Magma
    k:=7; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;
    # 2nd program
    for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^7, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
  • PARI
    k=7; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    k=7; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j * binomial(2*n+k-j, n-j), with k=7.
a(n) ~ 2^(2*n+8)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+7)*(3*n+11)*a(n) -(21*n^3+212*n^2+719*n+840)*a(n-1) -2*(2*n+5)*(n+3)*(3*n+14)*a(n-2)=0. - R. J. Mathar, Feb 19 2016

A172065 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=8.

Original entry on oeis.org

1, 9, 56, 297, 1444, 6656, 29618, 128603, 548591, 2309467, 9624964, 39799813, 163556776, 668796712, 2723729944, 11055878188, 44753742226, 180746332690, 728571706240, 2932018571370, 11783070278816, 47297147250204
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 8th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.

Examples

			a(4) = C(16,4) - C(15,3) + C(14,2) - C(13,1) + C(12,0) = 20*91 - 35*13 + 91 - 13 + 1 = 1820 - 455 + 79 = 1444.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172066 (k=9), A172067 (k=10)

Programs

  • Magma
    k:=8; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    a:= n-> add((-1)^(p)*binomial(2*n-p+8, n-p), p=0..n):
    seq(a(n), n=0..40);
    # 2nd program
    a:= n-> coeff(series((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))
            /(2*z))^8, z, n+20), z, n):
    seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^8, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
  • PARI
    k=8; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    k=8; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 17 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j *binomial(2*n+k-j, n-j), with k=8.
a(n) ~ 2^(2*n+9)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+8)*(3*n+13)*a(n) -(21*n^3 + 247*n^2 + 980*n + 1344)*a(n-1) - 2*(n+3)*(3*n+16)*(2*n+7)*a(n-2) = 0. - R. J. Mathar, Feb 29 2016

A172066 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=9.

Original entry on oeis.org

1, 10, 67, 376, 1912, 9142, 41941, 186880, 815083, 3498146, 14827487, 62236064, 259187048, 1072567256, 4415408372, 18098359424, 73915594466, 300958990724, 1222228100590, 4952609171080, 20030298812596, 80876902778482
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 9th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.

Examples

			a(4) = C(17,4) - C(16,3) + C(15,2) - C(14,1) + C(13,0) = 17*4*5*7 - 16*5*7 + 105 - 14 + 1 = 5*7*(68-16) + 92 = 1912.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172067 (k=10).

Programs

  • Magma
    k:=9; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;
    # 2nd program
    for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^9, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
  • PARI
    k=9; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    k=9; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 17 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j * binomial(2*n+k-j,n-j), with k=9.
a(n) ~ 2^(2*n+10)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+9)*(n+5)*a(n) -(7*n^3+94*n^2+427*n+672)*a(n-1) -2*(2*n+7)*(n+6)*(n+4)*a(n-2)=0. - R. J. Mathar, Feb 19 2016

A172067 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=10.

Original entry on oeis.org

1, 11, 79, 468, 2486, 12323, 58277, 266492, 1188679, 5202523, 22436251, 95630272, 403770544, 1691678428, 7042481236, 29161852240, 120212658034, 493656394350, 2020590599710, 8247228533780, 33579755528278, 136434358356201
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 10th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.

Examples

			a(4) = C(18,4) - C(17,3) + C(16,2) - C(15,1) + C(14,0) = 60*51 - 680 + 120 - 15 + 1 = 2486.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172066 (k=9), this sequence (k=10).

Programs

  • Magma
    k:=10; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 27 2019
    
  • Maple
    a:= n-> add((-1)^(p)*binomial(2*n-p+10, n-p), p=0..n):
    seq(a(n), n=0..40);
    # 2nd program
    a:= n-> coeff(series((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))
            /(2*z))^10, z, n+20), z, n):
    seq(a(n), n=0..40);
  • Mathematica
    With[{k=10}, CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^k, {x, 0, 30}], x]] (* G. C. Greubel, Feb 27 2019 *)
  • PARI
    k=10; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 27 2019
    
  • Sage
    k=10; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 27 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j*binomial(2*n+k-j,n-j), with k=10.
Conjecture: 2*n*(n+10)*(3*n+17)*a(n) - (21*n^3 + 317*n^2 + 1622*n + 2880)*a(n-1) - 2*(3*n+20)*(n+4)*(2*n+9)*a(n-2) = 0. - R. J. Mathar, Feb 21 2016

A333564 a(n) = [x^n] ( c(x)/c(-x) )^n, where c(x) = (1 - sqrt( 1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.

Original entry on oeis.org

2, 8, 56, 384, 2752, 20096, 148864, 1114112, 8403968, 63787008, 486584320, 3727196160, 28649455616, 220869853184, 1707123245056, 13223868760064, 102636144295936, 797982357192704, 6213784327684096, 48452953790480384, 378291752487878656, 2956824500391378944
Offset: 1

Views

Author

Peter Bala, Apr 07 2020

Keywords

Comments

It can be shown that a(n) satisfies the Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p. We conjecture that a(n) satisfies the stronger congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 3 and positive integers n and k. Some examples are given below.
More generally, for integer r and positive integer s, we conjecture that the sequence a(r,s;n) := 2^(r*n) * Sum_{k = 0..s*n-1} (-1)^(s*n-1+k)*( binomial(n+k,k) )^r satisfies the same congruences. This is the case r = s = 1.

Examples

			Examples of congruences:
a(11) - a(1) = 486584320 - 2 = 2*(11^3)*182789 == 0 ( mod 11^3 ).
a(2*11) - a(2) = 2956824500391378944 - 8 = (2^3)*(3^2)*(11^3)*
107*288357478039 == 0 ( mod 11^3 ).
a(5^2) - a(5) = 1420245922851693002752 - 2752 = (2^6)*(3^3)*(5^6)* 7*19*1123*352183001 == 0 ( mod 5^6 ).
		

Crossrefs

Programs

  • Maple
    seq( (2^n)*add( (-1)^(n-1+k)*binomial(n+k,k), k = 0..n-1), n = 1..25);
    # alternative program
    a := proc (n) option remember; `if`(n = 1, 2, `if`(n = 2, 8, `if`(n = 3, 56, ((3*n+4)*a(n-1)+(36*n-76)*a(n-2)+(32*n-80)*a(n-3))/n)))
    end proc:
    seq(a(n), n = 1..25);
  • Mathematica
    a[n_] := -2^(n) Binomial[2n, n-1] Hypergeometric2F1[1, 2n +1, n + 2, 2];
    Table[Simplify[a[n]], {n, 1, 22}] (* Peter Luschny, Apr 13 2020 *)
    c[x_] := (1-Sqrt[1-4x])/(2x); ser[n_] := Series[(c[x]/c[-x])^n, {x, 0, 22}];
    Table[SeriesCoefficient[ser[n], n], {n, 1, 22}] (* Peter Luschny, Apr 14 2020 *)
  • Python
    from itertools import count, islice
    def A333564_gen(): # generator of terms
        yield (a:=2)
        c = 1
        for n in count(1):
            yield a<>1
    A333564_list = list(islice(A333564_gen(),20)) # Chai Wah Wu, Apr 26 2023

Formula

a(n) = 2^n * Sum_{k = 0..n-1} (-1)^(n-1+k)*binomial(n+k,k) = 2^n * A014300(n).
a(n) = (-1)^(n+1) + Sum_{k = 0..n-1} n^2/((n-k)*(2*n-k))*C(n-k,k)*C(3*n-2*k-1,n-k).
Congruences: a(p) == 2 ( mod p^3 ) for all prime p >= 3, follows from previous formula.
a(n) = Sum_{k = 1..n} (-1)^(n+k)*(3*k-1)*2^(k-1)*A000108(k-1).
a(n) = (1/2)*(A119259(n) - (-1)^n).
a(n) ~ 8^n / (3*sqrt(Pi*n)).
P-recursive with recurrence n*(3*n - 4)*a(n) = (21*n^2 - 40*n + 12)*a(n-1) + 4*(3*n - 1)*(2*n - 3)*a(n-2) with a(1) = 2 and a(2) = 8. Cf. A333565.
Alternative form: (a(n) + a(n-1))/(a(n) - a(n-2)) = P(n)/Q(n), where P(n) = 4*(3*n - 1)*(2*n - 3) and Q(n) = (21*n^2 - 40*n + 12).
Also, n*a(n) = (3*n + 4)*a(n-1) + 4*(9*n - 19)*a(n-2) + 16*(2*n - 5)*a(n-3) with a(1) = 2, a(2) = 8 and a(3) = 56.
O.g.f.: A(x) = 4*x/(1 - 8*x + (1 + 4*x)*sqrt(1 - 8*x)), which satisfies the differential equation (x + 1)*(4*x + 1)*(8*x - 1)*A'(x) + (16*x^2 - 4*x + 7)*A(x) + 2*(1 - 2*x) = 0.

A167772 Riordan array (c(x)/(1+x*c(x)), x*c(x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 6, 8, 6, 3, 1, 18, 24, 18, 10, 4, 1, 57, 75, 57, 33, 15, 5, 1, 186, 243, 186, 111, 54, 21, 6, 1, 622, 808, 622, 379, 193, 82, 28, 7, 1, 2120, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1, 7338, 9458, 7338, 4596, 2476, 1164, 474, 163, 45, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2009, corrected Nov 12 2009

Keywords

Examples

			Triangle begins:
     1;
     0,    1;
     1,    1,    1;
     2,    3,    2,    1;
     6,    8,    6,    3,   1;
    18,   24,   18,   10,   4,   1;
    57,   75,   57,   33,  15,   5,   1;
   186,  243,  186,  111,  54,  21,   6,  1;
   622,  808,  622,  379, 193,  82,  28,  7,  1;
  2120, 2742, 2120, 1312, 690, 311, 118, 36,  8,  1;
Production matrix begins:
  0, 1;
  1, 1, 1;
  1, 1, 1, 1;
  1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  ... - _Philippe Deléham_, Mar 03 2013
		

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a167772 n k = genericIndex (a167772_row n) k
    a167772_row n = genericIndex a167772_tabl n
    a167772_tabl = [1] : [0, 1] :
                   map (\xs@(:x:) -> x : xs) (tail a065602_tabl)
    -- Reinhard Zumkeller, May 15 2014
    
  • Mathematica
    A065602[n_, k_]:= A065602[n,k]= Sum[(k-1+2*j)*Binomial[2*(n-j)-k-1, n-1]/(2*(n-j) -k-1), {j, 0, (n-k)/2}];
    T[n_, k_]:= If[k==0, A065602[n+1,3] + Boole[n==0], A065602[n+1, k+1]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2022 *)
  • SageMath
    def A065602(n,k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )
    def A167772(n,k):
        if (k==0): return A065602(n+1,3) + bool(n==0)
        else: return A065602(n+1,k+1)
    flatten([[A167772(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2022

Formula

Sum_{k=0..n} T(n, k) = A000958(n+1).
From Philippe Deléham, Nov 12 2009: (Start)
Sum_{k=0..n} T(n,k)*2^k = A014300(n).
Sum_{k=0..n} T(n,k)*2^(n-k) = A064306(n). (End)
For n > 0: T(n,0) = A065602(n+1,3), T(n,k) = A065602(n+1,k+1), k = 1..n. - Reinhard Zumkeller, May 15 2014

A109244 A tree-node counting triangle.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 13, 7, 3, 1, 46, 24, 11, 4, 1, 166, 86, 40, 16, 5, 1, 610, 314, 148, 62, 22, 6, 1, 2269, 1163, 553, 239, 91, 29, 7, 1, 8518, 4352, 2083, 920, 367, 128, 37, 8, 1, 32206, 16414, 7896, 3544, 1461, 541, 174, 46, 9, 1, 122464, 62292, 30086, 13672, 5776, 2232
Offset: 0

Views

Author

Paul Barry, Jun 23 2005

Keywords

Comments

Columns include A026641,A014300,A014301. Inverse matrix is A109246. Row sums are A014300. Diagonal sums are A109245.

Examples

			Rows begin:
  1;
  1,1;
  4,2,1;
  13,7,3,1;
  46,24,11,4,1;
  166,86,40,16,5,1;
		

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j-> (-1)^(n-j)*Binomial(n+j-k, j-k) )))); # G. C. Greubel, Feb 19 2019
  • Magma
    [[(&+[(-1)^(n-j)*Binomial(n+j-k, j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    Table[Sum[(-1)^(n-j)*Binomial[n+j-k, j-k], {j,0,n}], {n,0,12}, {k,0,n}] //Flatten  (* G. C. Greubel, Feb 19 2019 *)
  • PARI
    {T(n,k) = sum(j=0,n, (-1)^(n-j)*binomial(n+j-k, j-k))};
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [[sum((-1)^(n-j)*binomial(n+j-k, j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 19 2019
    

Formula

Number triangle T(n, k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n+i-k, i-k).
Riordan array (1/(1-x*c(x)-2*x^2*c(x)^2), x*c(x)) where c(x)=g.f. of A000108.
The production matrix M (discarding the zeros) is:
1, 1;
3, 1, 1;
3, 1, 1, 1;
3, 1, 1, 1, 1;
... such that the n-th row of the triangle is the top row of M^n. - Gary W. Adamson, Feb 16 2012

A128730 Number of UDL's in all skew Dyck paths of semilength n.

Original entry on oeis.org

0, 0, 1, 4, 16, 68, 301, 1366, 6301, 29400, 138355, 655424, 3121438, 14930540, 71675839, 345148892, 1666432816, 8064278288, 39103576699, 189949958332, 924163714216, 4502711570988, 21966152501239, 107284324830302
Offset: 0

Views

Author

Emeric Deutsch, Mar 31 2007

Keywords

Comments

A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of steps in it.

Examples

			a(3) = 4 because we have UDUUDL, UUUDLD, UUDUDL and UUUDLL (the other six skew Dyck paths of semilength 3 are the five Dyck paths and UUUDDL).
		

Crossrefs

Programs

  • Maple
    G:=2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..26);
  • Mathematica
    CoefficientList[Series[2*x^2/(1-6*x+5*x^2+(1+x)*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    z='z+O('z^50); concat([0,0], Vec(2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)))) \\ G. C. Greubel, Mar 19 2017

Formula

a(n) = Sum_{k>=0} k*A128728(n,k).
G.f.: 2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)).
a(n) ~ 5^(n-1/2)/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence: +2*(n-1)*(3*n-8)*a(n) +(-39*n^2+161*n-148)*a(n-1) +(48*n^2-215*n+220)*a(n-2) -5*(3*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Jun 17 2016
For n >= 2, a(n) = Sum_{k=1..n-1} binomial(n,k)*A014300(k). - Jianing Song, Apr 20 2019

A306409 a(n) = -Sum_{0<=i

Original entry on oeis.org

0, 1, 3, 10, 34, 120, 434, 1597, 5949, 22363, 84655, 322245, 1232205, 4729453, 18210279, 70307546, 272087770, 1055139408, 4099200524, 15951053566, 62159391150, 242542955378, 947504851414, 3705431067156, 14505084243860, 56831711106496, 222853334131080
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2019

Keywords

Examples

			n | a(n) | A307354 | A006134 | A120305
--+------+---------+---------+---------
0 |    0 |       1 |       1 |       1
1 |    1 |       2 |       3 |       1
2 |    3 |       6 |       9 |       3
3 |   10 |      19 |      29 |       9
4 |   34 |      65 |      99 |      31
5 |  120 |     231 |     351 |     111
		

Crossrefs

Partial sums of A014300. - Seiichi Manyama, Jan 30 2023

Programs

  • Mathematica
    Table[-Sum[Sum[(-1)^(i+j) * (i+j)!/(i!*j!), {i, 0, j-1}], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Apr 05 2019 *)
  • PARI
    a(n) = -sum(i=0, n, sum(j=i+1, n, (-1)^(i+j)*(i+j)!/(i!*j!)));
    
  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec((1-sqrt(1-4*x))/(sqrt(1-4*x)*(1-x)*(3-sqrt(1-4*x))))) \\ Seiichi Manyama, Jan 30 2023

Formula

a(n) = A006134(n) - A307354(n).
a(n) = (A006134(n) - A120305(n))/2.
a(n) ~ 4^(n+1) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 05 2019
G.f.: ( 1/(sqrt(1-4*x) * (1-x)) ) * ( x *c(x)/(1 + x *c(x)) ), where c(x) is the g.f. of A000108. - Seiichi Manyama, Jan 30 2023

A119307 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, k)*C(j, n - k).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 46, 19, 1, 1, 29, 127, 127, 29, 1, 1, 41, 281, 517, 281, 41, 1, 1, 55, 541, 1579, 1579, 541, 55, 1, 1, 71, 946, 4001, 6376, 4001, 946, 71, 1, 1, 89, 1541, 8889, 20626, 20626, 8889, 1541, 89, 1, 1, 109, 2377, 17907, 56904, 82994
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Examples

			Triangle begins
  1,
  1, 1,
  1, 5, 1,
  1, 11, 11, 1,
  1, 19, 46, 19, 1,
  1, 29, 127, 127, 29, 1,
  1, 41, 281, 517, 281, 41, 1
  ...
		

Crossrefs

Second column is A028387.
Row sums are A014300.
Central coefficients T(2*n, n) are A112029.

Programs

  • Maple
    T := (n, k) -> if n = k then 1 else binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) fi: for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
    # Peter Luschny, May 13 2024
  • Mathematica
    Flatten[Table[Sum[Binomial[j,k] Binomial[j,n-k],{j,0,n}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 03 2017 *)
  • PARI
    tabl(nn)={for (n=0, nn, for(k=0, n, print1(sum(j=0, n, binomial(j,k)*binomial(j,n-k)),", ");); print(););};
    tabl(10); \\ Indranil Ghosh, Mar 03 2017

Formula

T(n, k) = T(n, n - k).
T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) for k=0..n-1. - Peter Luschny, May 13 2024
Previous Showing 11-20 of 27 results. Next