cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 64 results. Next

A337483 Number of ordered triples of positive integers summing to n that are either weakly increasing or weakly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 5, 8, 10, 13, 16, 20, 23, 28, 32, 37, 42, 48, 53, 60, 66, 73, 80, 88, 95, 104, 112, 121, 130, 140, 149, 160, 170, 181, 192, 204, 215, 228, 240, 253, 266, 280, 293, 308, 322, 337, 352, 368, 383, 400, 416, 433, 450, 468, 485, 504, 522, 541, 560
Offset: 0

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 10 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (2,1,1)  (1,2,2)  (1,2,3)  (1,2,4)  (1,2,5)
                    (2,2,1)  (2,2,2)  (1,3,3)  (1,3,4)
                    (3,1,1)  (3,2,1)  (2,2,3)  (2,2,4)
                             (4,1,1)  (3,2,2)  (2,3,3)
                                      (3,3,1)  (3,3,2)
                                      (4,2,1)  (4,2,2)
                                      (5,1,1)  (4,3,1)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

A001399(n - 3) = A069905(n) = A211540(n + 2) counts the unordered case.
2*A001399(n - 6) = 2*A069905(n - 3) = 2*A211540(n - 1) counts the strict case.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts the strict unordered case.
A329398 counts these compositions of any length.
A218004 counts strictly increasing or weakly decreasing compositions.
A337484 counts neither strictly increasing nor strictly decreasing compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],LessEqual@@#||GreaterEqual@@#&]],{n,0,30}]

Formula

a(n > 0) = 2*A001399(n - 3) - A079978(n).
From Colin Barker, Sep 08 2020: (Start)
G.f.: x^3*(1 + x + x^2 - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6. (End)
E.g.f.: (36 - 9*exp(-x) + exp(x)*(6*x^2 + 6*x - 19) - 8*exp(-x/2)*cos(sqrt(3)*x/2))/36. - Stefano Spezia, Apr 05 2023

A337602 Number of ordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 10, 9, 18, 16, 24, 21, 43, 24, 51, 31, 54, 42, 94, 45, 102, 55, 99, 69, 163, 66, 150, 88, 168, 96, 265, 93, 228, 121, 246, 126, 337, 132, 315, 169, 342, 162, 487, 165, 420, 217, 411, 213, 619, 207, 558, 259, 540, 258, 784, 264, 654, 325, 660
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 18 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (1,2,1)  (1,2,2)  (1,2,3)  (1,3,3)  (1,2,5)
           (2,1,1)  (1,3,1)  (1,3,2)  (1,5,1)  (1,3,4)
                    (2,1,2)  (1,4,1)  (2,2,3)  (1,4,3)
                    (2,2,1)  (2,1,3)  (2,3,2)  (1,5,2)
                    (3,1,1)  (2,2,2)  (3,1,3)  (1,6,1)
                             (2,3,1)  (3,2,2)  (2,1,5)
                             (3,1,2)  (3,3,1)  (2,3,3)
                             (3,2,1)  (5,1,1)  (2,5,1)
                             (4,1,1)           (3,1,4)
                                               (3,2,3)
                                               (3,3,2)
                                               (3,4,1)
                                               (4,1,3)
                                               (4,3,1)
                                               (5,1,2)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

The complement in A014311 of A337695 ranks these compositions.
A220377*6 is the strict case.
A337600 is the unordered version.
A337603 does not consider a singleton to be coprime unless it is (1).
A337664 counts these compositions of any length.
A000740 counts relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
A000217 counts 3-part compositions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime 3-part compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],SameQ@@#||CoprimeQ@@Union[#]&]],{n,0,100}]

A081118 Triangle of first n numbers per row having exactly n 1's in binary representation.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 23, 27, 29, 31, 47, 55, 59, 61, 63, 95, 111, 119, 123, 125, 127, 191, 223, 239, 247, 251, 253, 255, 383, 447, 479, 495, 503, 507, 509, 511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1023, 1535, 1791, 1919, 1983, 2015, 2031, 2039, 2043
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2003

Keywords

Comments

T(n,n) = A036563(n+1) = 2^(n+1) - 3.
Numbers of the form 2^t - 2^k - 1, 1 <= k < t.

Examples

			Triangle begins:
.......... 1 ......... ................ 1
........ 3...5 ....... .............. 11 101
...... 7..11..13 ..... .......... 111 1011 1101
... 15..23..27..29 ... ...... 1111 10111 11011 11101
. 31..47..55..59..61 . . 11111 101111 110111 111011 111101.
		

Crossrefs

Programs

  • Haskell
    a081118 n k = a081118_tabl !! (n-1) !! (k-1)
    a081118_row n = a081118_tabl !! (n-1)
    a081118_tabl  = iterate
       (\row -> (map ((+ 1) . (* 2)) row) ++ [4 * (head row) + 1]) [1]
    a081118_list = concat a081118_tabl
    -- Reinhard Zumkeller, Feb 23 2012
  • Mathematica
    Table[2^(n+1)-2^(n-k+1)-1,{n,10},{k,n}]//Flatten (* Harvey P. Dale, Apr 09 2020 *)

Formula

T(n, k) = 2^(n+1) - 2^(n-k+1) - 1, 1<=k<=n.
a(n) = (2^A002260(n)-1)*2^A004736(n)-1; a(n)=(2^i-1)*2^j-1, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Apr 04 2013

A100565 a(n) = Card{(x,y,z) : x <= y <= z, x|n, y|n, z|n, gcd(x,y)=1, gcd(x,z)=1, gcd(y,z)=1}.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 15, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 15, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 25, 2, 5, 8, 7, 5, 15, 2, 8, 5, 15, 2, 18, 2, 5, 8, 8, 5, 15, 2, 14, 5, 5, 2, 25, 5, 5, 5, 11, 2, 25, 5, 8, 5, 5, 5, 17
Offset: 1

Views

Author

Vladeta Jovovic, Nov 28 2004

Keywords

Comments

First differs from A018892 at a(30) = 15, A018892(30) = 14.
First differs from A343654 at a(210) = 51, A343654(210) = 52.
Also a(n) = Card{(x,y,z) : x <= y <= z and lcm(x,y)=n, lcm(x,z)=n, lcm(y,z)=n}.
In words, a(n) is the number of pairwise coprime unordered triples of divisors of n. - Gus Wiseman, May 01 2021

Examples

			From _Gus Wiseman_, May 01 2021: (Start)
The a(n) triples for n = 1, 2, 4, 6, 8, 12, 24:
  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)   (1,1,1)
           (1,1,2)  (1,1,2)  (1,1,2)  (1,1,2)  (1,1,2)   (1,1,2)
                    (1,1,4)  (1,1,3)  (1,1,4)  (1,1,3)   (1,1,3)
                             (1,1,6)  (1,1,8)  (1,1,4)   (1,1,4)
                             (1,2,3)           (1,1,6)   (1,1,6)
                                               (1,2,3)   (1,1,8)
                                               (1,3,4)   (1,2,3)
                                               (1,1,12)  (1,3,4)
                                                         (1,3,8)
                                                         (1,1,12)
                                                         (1,1,24)
(End)
		

Crossrefs

Positions of 2's through 5's are A000040, A001248, A030078, A068993.
The version for subsets of {1..n} instead of divisors is A015617.
The version for pairs of divisors is A018892.
The ordered version is A048785.
The strict case is A066620.
The version for strict partitions is A220377.
A version for sets of divisors of any size is A225520.
The version for partitions is A307719 (no 1's: A337563).
The case of distinct parts coprime is A337600 (ordered: A337602).
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A051026 counts pairwise indivisible subsets of {1..n}.
A302696 lists Heinz numbers of pairwise coprime partitions.
A337461 counts 3-part pairwise coprime compositions.

Programs

  • Mathematica
    pwcop[y_]:=And@@(GCD@@#==1&/@Subsets[y,{2}]);
    Table[Length[Select[Tuples[Divisors[n],3],LessEqual@@#&&pwcop[#]&]],{n,30}] (* Gus Wiseman, May 01 2021 *)
  • PARI
    A100565(n) = (numdiv(n^3)+3*numdiv(n)+2)/6; \\ Antti Karttunen, May 19 2017

Formula

a(n) = (tau(n^3) + 3*tau(n) + 2)/6.

A067576 Array T(i,j) read by downward antidiagonals, where T(i,j) is the j-th term whose binary expansion has i 1's.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 6, 11, 15, 16, 9, 13, 23, 31, 32, 10, 14, 27, 47, 63, 64, 12, 19, 29, 55, 95, 127, 128, 17, 21, 30, 59, 111, 191, 255, 256, 18, 22, 39, 61, 119, 223, 383, 511, 512, 20, 25, 43, 62, 123, 239, 447, 767, 1023, 1024, 24, 26, 45, 79, 125, 247, 479, 895, 1535, 2047
Offset: 1

Views

Author

Robert G. Wilson v, Jan 30 2002

Keywords

Comments

This is a permutation of the positive integers; the inverse permutation is A356419. - Jianing Song, Aug 06 2022

Examples

			Array begins:
        j=1  j=2  j=3  j=4  j=5  j=6
  i=1:    1,   2,   4,   8,  16,  32, ...
  i=2:    3,   5,   6,   9,  10,  12, ...
  i=3:    7,  11,  13,  14,  19,  21, ...
  i=4:   15,  23,  27,  29,  30,  39, ...
  i=5:   31,  47,  55,  59,  61,  62, ...
  i=6:   63,  95, 111, 119, 123, 125, ...
		

Crossrefs

T(n,n) gives A036563(n+1).
The antidiagonals are read in the opposite direction from those in A066884.
Antidiagonal sums give A361074.

Programs

  • Mathematica
    a = {}; Do[ a = Append[a, Last[ Take[ Select[ Range[2^13], Count[ IntegerDigits[ #, 2], 1] == j & ], i - j]]], {i, 2, 12}, {j, 1, i - 1} ]; a

A066884 Square array read by upward antidiagonals where the n-th row contains the positive integers with n binary 1's.

Original entry on oeis.org

1, 3, 2, 7, 5, 4, 15, 11, 6, 8, 31, 23, 13, 9, 16, 63, 47, 27, 14, 10, 32, 127, 95, 55, 29, 19, 12, 64, 255, 191, 111, 59, 30, 21, 17, 128, 511, 383, 223, 119, 61, 39, 22, 18, 256, 1023, 767, 447, 239, 123, 62, 43, 25, 20, 512, 2047, 1535, 895, 479, 247, 125, 79, 45, 26, 24, 1024
Offset: 1

Views

Author

Jared Benjamin Ricks (jaredricks(AT)yahoo.com), Jan 21 2002

Keywords

Comments

This is a permutation of the positive integers; the inverse permutation is A067587.

Examples

			Column: 1   2   3   4   5   6
-----------------------------
Row 1:| 1   2   4   8  16  32
Row 2:| 3   5   6   9  10  12
Row 3:| 7  11  13  14  19  21
Row 4:|15  23  27  29  30  39
Row 5:|31  47  55  59  61  62
Row 6:|63  95 111 119 123 125
		

Crossrefs

Selected rows: A000079 (1), A018900 (2), A014311 (3), A014312 (4), A014313 (5), A023688 (6), A023689 (7), A023690 (8), A023691 (9), A038461 (10), A038462 (11), A038463 (12). For decimal analogs, see A011557 and A038444-A038452.
Selected columns: A000225 (1), A055010 (2).
Selected diagonals: A036563 (main), A000918 (1st upper), A153894 (2nd upper). [Franklin T. Adams-Watters, Apr 22 2009]
Cf. A067576 (the same array read by downward antidiagonals).
Antidiagonal sums give A361074.

Programs

  • Mathematica
    a = {}; Do[ a = Append[a, Last[ Take[ Take[ Select[ Range[2^12], Count[ IntegerDigits[ #, 2], 1] == j - i + 1 & ], j], i]]], {j, 1, 11}, {i, 1, j}]; a

Extensions

Corrected and extended by Henry Bottomley, Jan 27 2002

A084468 Odd numbers with exactly 3 ones in binary expansion.

Original entry on oeis.org

7, 11, 13, 19, 21, 25, 35, 37, 41, 49, 67, 69, 73, 81, 97, 131, 133, 137, 145, 161, 193, 259, 261, 265, 273, 289, 321, 385, 515, 517, 521, 529, 545, 577, 641, 769, 1027, 1029, 1033, 1041, 1057, 1089, 1153, 1281, 1537, 2051, 2053, 2057, 2065, 2081, 2113, 2177
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2003

Keywords

Crossrefs

Intersection of A005408 and A014311.
A084470(n) gives the position of a(n) in A084467(n).
Cf. A018900.

Programs

  • Mathematica
    Flatten[Table[2^m + 2^n + 1, {m, 2, 11}, {n, m - 1}]] (* Alonso del Arte, Jul 08 2011 *)
  • PARI
    for(m=2, 9, for(n=1, m-1, print1(2^m+2^n+1", "))) \\ Charles R Greathouse IV, Oct 04 2011
    
  • Python
    from math import isqrt, comb
    def A084468(n): return (1<<(m:=isqrt(n<<3)+1>>1)+1)+(1<<(n-comb(m,2)))|1 # Chai Wah Wu, Apr 07 2025

Formula

a(n) = 2*A018900(n) + 1 = A005408(A018900(n)).
Sum_{n>=1} 1/a(n) = 0.714295772926319061998427422200268976390844375453066534198594764887682975019... (calculated using Baillie's irwinSums.m, see Links). - Amiram Eldar, Feb 14 2022

A066620 Number of unordered triples of distinct pairwise coprime divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1, 1, 3, 0, 13, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 7, 0
Offset: 1

Views

Author

K. B. Subramaniam (kb_subramaniambalu(AT)yahoo.com) and Amarnath Murthy, Dec 24 2001

Keywords

Comments

a(m) = a(n) if m and n have same factorization structure.

Examples

			a(24) = 3: the divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24. The triples are (1, 2, 3), (1, 2, 9), (1, 3, 4).
a(30) = 7: the triples are (1, 2, 3), (1, 2, 5), (1, 3, 5), (2, 3, 5), (1, 3, 10), (1, 5, 6), (1, 2, 15).
		

References

  • Amarnath Murthy, Decomposition of the divisors of a natural number into pairwise coprime sets, Smarandache Notions Journal, vol. 12, No. 1-2-3, Spring 2001.pp 303-306.

Crossrefs

Positions of zeros are A000961.
Positions of ones are A006881.
The version for subsets of {1..n} instead of divisors is A015617.
The non-strict ordered version is A048785.
The version for pairs of divisors is A063647.
The non-strict version (3-multisets) is A100565.
The version for partitions is A220377 (non-strict: A307719).
A version for sets of divisors of any size is A225520.
A000005 counts divisors.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A018892 counts unordered pairs of coprime divisors (ordered: A048691).
A051026 counts pairwise indivisible subsets of {1..n}.
A337461 counts 3-part pairwise coprime compositions.
A338331 lists Heinz numbers of pairwise coprime partitions.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n],{3}],CoprimeQ@@#&]],{n,100}] (* Gus Wiseman, Apr 28 2021 *)
  • PARI
    A066620(n) = (numdiv(n^3)-3*numdiv(n)+2)/6; \\ After Jovovic's formula. - Antti Karttunen, May 27 2017
    
  • Python
    from sympy import divisor_count as d
    def a(n): return (d(n**3) - 3*d(n) + 2)/6 # Indranil Ghosh, May 27 2017

Formula

In the reference it is shown that if k is a squarefree number with r prime factors and m with (r+1) prime factors then a(m) = 4*a(k) + 2^k - 1.
a(n) = (tau(n^3)-3*tau(n)+2)/6. - Vladeta Jovovic, Nov 27 2004

Extensions

More terms from Vladeta Jovovic, Apr 03 2003
Name corrected by Andrey Zabolotskiy, Dec 09 2020
Name corrected by Gus Wiseman, Apr 28 2021 (ordered version is 6*a(n))

A338556 Products of three prime numbers of even index.

Original entry on oeis.org

27, 63, 117, 147, 171, 261, 273, 333, 343, 387, 399, 477, 507, 549, 609, 637, 639, 711, 741, 777, 801, 903, 909, 931, 963, 1017, 1083, 1113, 1131, 1179, 1183, 1251, 1281, 1359, 1421, 1443, 1467, 1491, 1557, 1629, 1653, 1659, 1677, 1729, 1737, 1791, 1813, 1869
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

All terms are odd.
Also Heinz numbers of integer partitions with 3 parts, all of which are even. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
      27: {2,2,2}      637: {4,4,6}     1183: {4,6,6}
      63: {2,2,4}      639: {2,2,20}    1251: {2,2,34}
     117: {2,2,6}      711: {2,2,22}    1281: {2,4,18}
     147: {2,4,4}      741: {2,6,8}     1359: {2,2,36}
     171: {2,2,8}      777: {2,4,12}    1421: {4,4,10}
     261: {2,2,10}     801: {2,2,24}    1443: {2,6,12}
     273: {2,4,6}      903: {2,4,14}    1467: {2,2,38}
     333: {2,2,12}     909: {2,2,26}    1491: {2,4,20}
     343: {4,4,4}      931: {4,4,8}     1557: {2,2,40}
     387: {2,2,14}     963: {2,2,28}    1629: {2,2,42}
     399: {2,4,8}     1017: {2,2,30}    1653: {2,8,10}
     477: {2,2,16}    1083: {2,8,8}     1659: {2,4,22}
     507: {2,6,6}     1113: {2,4,16}    1677: {2,6,14}
     549: {2,2,18}    1131: {2,6,10}    1729: {4,6,8}
     609: {2,4,10}    1179: {2,2,32}    1737: {2,2,44}
		

Crossrefs

A014612 allows all prime indices (not just even) (strict: A007304).
A066207 allows products of any length (strict: A258117).
A338471 is the version for odds instead of evens (strict: A307534).
A338557 is the strict case.
A014311 is a ranking of ordered triples (strict: A337453).
A001399(n-3) counts 3-part partitions (strict: A001399(n-6)).
A005117 lists squarefree numbers, with even case A039956.
A008284 counts partitions by sum and length (strict: A008289).
A023023 counts 3-part relatively prime partitions (strict: A101271).
A046316 lists products of exactly three odd primes (strict: A046389).
A066208 lists numbers with all odd prime indices (strict: A258116).
A075818 lists even Heinz numbers of 3-part partitions (strict: A075819).
A307719 counts 3-part pairwise coprime partitions (strict: A220377).
A285508 lists Heinz numbers of non-strict triples.
Subsequence of A332820.

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]==3&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
  • PARI
    isok(m) = my(f=factor(m)); (bigomega(f)==3) && (#select(x->(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from itertools import filterfalse
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A338556(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))>>1)-(b>>1)+1 for a,k in filterfalse(lambda x:x[0]&1,enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2)) for b,m in filterfalse(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024

A338471 Products of three prime numbers of odd index.

Original entry on oeis.org

8, 20, 44, 50, 68, 92, 110, 124, 125, 164, 170, 188, 230, 236, 242, 268, 275, 292, 310, 332, 374, 388, 410, 412, 425, 436, 470, 506, 508, 548, 575, 578, 590, 596, 605, 628, 668, 670, 682, 716, 730, 764, 775, 782, 788, 830, 844, 902, 908, 932, 935, 964, 970
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

Also Heinz numbers of integer partitions with 3 parts, all of which are odd. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
       8: {1,1,1}      268: {1,1,19}     575: {3,3,9}
      20: {1,1,3}      275: {3,3,5}      578: {1,7,7}
      44: {1,1,5}      292: {1,1,21}     590: {1,3,17}
      50: {1,3,3}      310: {1,3,11}     596: {1,1,35}
      68: {1,1,7}      332: {1,1,23}     605: {3,5,5}
      92: {1,1,9}      374: {1,5,7}      628: {1,1,37}
     110: {1,3,5}      388: {1,1,25}     668: {1,1,39}
     124: {1,1,11}     410: {1,3,13}     670: {1,3,19}
     125: {3,3,3}      412: {1,1,27}     682: {1,5,11}
     164: {1,1,13}     425: {3,3,7}      716: {1,1,41}
     170: {1,3,7}      436: {1,1,29}     730: {1,3,21}
     188: {1,1,15}     470: {1,3,15}     764: {1,1,43}
     230: {1,3,9}      506: {1,5,9}      775: {3,3,11}
     236: {1,1,17}     508: {1,1,31}     782: {1,7,9}
     242: {1,5,5}      548: {1,1,33}     788: {1,1,45}
		

Crossrefs

A066208 allows products of any length (strict: A258116).
A307534 is the squarefree case.
A338469 is the restriction to odds.
A338556 is the version for evens (strict: A338557).
A000009 counts partitions into odd parts (strict: A000700).
A001399(n-3) counts 3-part partitions (strict: A001399(n-6)).
A008284 counts partitions by sum and length.
A014311 is a ranking of ordered triples (strict: A337453).
A014612 lists Heinz numbers of all triples (strict: A007304).
A023023 counts 3-part relatively prime partitions (strict: A101271).
A023023 counts 3-part relatively prime partitions (strict: A078374).
A046316 lists products of exactly three odd primes (strict: A046389).
A066207 lists numbers with all even prime indices (strict: A258117).
A075818 lists even Heinz numbers of 3-part partitions (strict: A075819).
A285508 lists Heinz numbers of non-strict triples.
A307719 counts 3-part pairwise coprime partitions (strict: A220377).
Subsequence of A332820.

Programs

  • Maple
    N:= 1000: # for terms <= N
    R:= NULL:
    for i from 1 by 2 do
      p:= ithprime(i);
      if p^3 >= N then break fi;
      for j from i by 2 do
        q:= ithprime(j);
        if p*q^2 >= N then break fi;
        for k from j by 2 do
          x:= p*q*ithprime(k);
          if x > N then break fi;
          R:= R,x;
    od od od:
    sort([R]); # Robert Israel, Jun 11 2025
  • Mathematica
    Select[Range[100],PrimeOmega[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • PARI
    isok(m) = my(f=factor(m)); (bigomega(f)==3) && (#select(x->!(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from sympy import primerange
    from itertools import combinations_with_replacement as mc
    def aupto(limit):
        pois = [p for i, p in enumerate(primerange(2, limit//4+1)) if i%2 == 0]
        return sorted(set(a*b*c for a, b, c in mc(pois, 3) if a*b*c <= limit))
    print(aupto(971)) # Michael S. Branicky, Aug 20 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A338471(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1)+1 for a,k in filter(lambda x:x[0]&1,enumerate(primerange(integer_nthroot(x,3)[0]+1),1)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024
Previous Showing 31-40 of 64 results. Next