cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 60 results. Next

A320933 a(n) = 2^n - floor((n+3)/2).

Original entry on oeis.org

0, 0, 2, 5, 13, 28, 60, 123, 251, 506, 1018, 2041, 4089, 8184, 16376, 32759, 65527, 131062, 262134, 524277, 1048565, 2097140, 4194292, 8388595, 16777203, 33554418, 67108850, 134217713, 268435441, 536870896
Offset: 0

Views

Author

Paul Curtz, Oct 28 2018

Keywords

Comments

The sequence 0, 0, a(n) is an autosequence of the second kind. The difference table is:
0, 0, 0, 0, 2, 5, 13, ...
0, 0, 0, 2, 3, 8, 15, ...
0, 0, 2, 1, 5, 7, 17, ...
0, 2, -1, 4, 2, 10, 14, ...
2, -3, 5, -2, 8, 4, 20, ...
-5, 8, -7, 10, -4, 16, 8, ...
13, -15, 17, -14, 20, -8, 32, ...
etc.

Crossrefs

Programs

  • GAP
    List([0..40],n->2^n-Int((n+3)/2)); # Muniru A Asiru, Oct 28 2018
    
  • Magma
    [((-1)^n+2^(n+2)-2*n-5)/4: n in [0..40]]; // G. C. Greubel, Jun 04 2019
    
  • Maple
    seq(2^n-floor((n+3)/2),n=0..40); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    a[n_]:=2^n - Floor[(n+3)/2]; Array[a, 40, 0] (* or *) CoefficientList[ Series[x^2*(2-x)/((1-x)^2*(1-x-2*x^2)), {x, 0, 40}], x] (* Stefano Spezia, Oct 28 2018 *)
  • PARI
    concat([0,0], Vec(x^2*(2-x)/((1-x)^2*(1+x)*(1-2*x)) + O(x^40))) \\ Colin Barker, Oct 28 2018
    
  • Sage
    [((-1)^n+2^(n+2)-2*n-5)/4 for n in (0..40)] # G. C. Greubel, Jun 04 2019

Formula

a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4).
a(n+1) = a(n) + A166920(n).
a(n+4) - a(n) = 13, 28, 58, 118, ... = 15*2^n - 2 = A060182(n+2).
With b(n) = 0, 0, 0, A011377(n) = 0, 0, 0, 1, 3, 8, 18, ..., then a(n) = 2*b(n+1) - b(n).
a(n+2) - 2*a(n+1) + a(n) = A014551(n).
G.f.: x^2*(2 - x)/((1-x)^2*(1 - x - 2*x^2)). - Stefano Spezia, Oct 28 2018
a(n) = ((-1)^n + 2^(n+2) - 2*n - 5) / 4. - Colin Barker, Oct 28 2018

Extensions

Three terms corrected by Colin Barker, Oct 28 2018

A087452 G.f.: (2-x)/((1+3x)(1-4x)); e.g.f.: exp(4x) + exp(-3x); a(n) = 4^n + (-3)^n.

Original entry on oeis.org

2, 1, 25, 37, 337, 781, 4825, 14197, 72097, 242461, 1107625, 4017157, 17308657, 65514541, 273218425, 1059392917, 4338014017, 17050729021, 69106897225, 273715645477, 1102998412177, 4387586157901, 17623567104025, 70274600998837, 281757406247137
Offset: 0

Views

Author

Paul Barry, Sep 06 2003

Keywords

Comments

Generalized Lucas-Jacobsthal numbers.

Crossrefs

Programs

Formula

a(n) = (-3)^n+4^n.
a(n) = a(n-1) + 12*a(n-2) for n > 1; a(0)=2, a(1)=1. - Philippe Deléham, Sep 19 2009
a(n) = 2*A053404(n) - A053404(n-1), n > 0. - Ralf Stephan, Jul 21 2013

A093835 n*Jacobsthal(n).

Original entry on oeis.org

0, 1, 2, 9, 20, 55, 126, 301, 680, 1539, 3410, 7513, 16380, 35503, 76454, 163845, 349520, 742747, 1572858, 3320497, 6990500, 14680071, 30758222, 64312669, 134217720, 279620275, 581610146, 1207959561, 2505397580, 5189752159
Offset: 0

Views

Author

Paul Barry, Apr 20 2004

Keywords

Comments

Convolution of Jacobsthal numbers A001045 and modified Jacobsthal-Lucas numbers (in A014551, change the leading 2 to a 1).

Crossrefs

Cf. A023607.

Programs

  • Mathematica
    LinearRecurrence[{2,3,-4,-4},{0,1,2,9},30] (* Harvey P. Dale, Jun 17 2017 *)

Formula

G.f.: x(1+2x^2)/(1-x-2x^2)^2; a(n)=n2^n/3-n(-1)^n/3.
a(n) = n*A001045(n). - R. J. Mathar, May 07 2019

A094360 Pair reversal of Jacobsthal-Lucas numbers.

Original entry on oeis.org

1, 2, 7, 5, 31, 17, 127, 65, 511, 257, 2047, 1025, 8191, 4097, 32767, 16385, 131071, 65537, 524287, 262145, 2097151, 1048577, 8388607, 4194305, 33554431, 16777217, 134217727, 67108865, 536870911, 268435457, 2147483647, 1073741825
Offset: 0

Views

Author

Paul Barry, Apr 26 2004

Keywords

Comments

Pair reversal of A014551

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1,4,4},{1,2,7},40] (* Harvey P. Dale, May 22 2020 *)

Formula

G.f. : (1+3x+5x^2)/((1+x)(1-4x^2)); a(n)=2^n(5+3(-1)^n)/4-(-1)^n.

A105225 a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = -1, a(2) = -2.

Original entry on oeis.org

1, -1, -2, 1, 6, 5, -6, -15, -2, 29, 34, -23, -90, -43, 138, 225, -50, -499, -398, 601, 1398, 197, -2598, -2991, 2206, 8189, 3778, -12599, -20154, 5045, 45354, 35265, -55442, -125971, -15086, 236857, 267030, -206683, -740742, -327375, 1154110, 1808861, -499358, -4117079, -3118362, 5115797
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-3,2},{1,-1,-2},50] (* or *) CoefficientList[ Series[ (-3*x^2+3*x-1)/(2*x^3-3*x^2+2*x-1),{x,0,50}],x] (* Harvey P. Dale, Jul 23 2012 *)

Formula

a(n) - a(n+1) = A002249(n).
a(n) = (A002249(n+1) + 1)/2.
From Harvey P. Dale, Jul 23 2012: (Start)
G.f.: -(3*x^2-3*x+1)/((x-1)*(2*x^2-x+1)).
a(n)=1/2*(1+(1/2*(1-I*Sqrt[7]))^n+(1/2*(1+I*Sqrt[7]))^n). (End)

A123265 Fibonacci-Lucas triangle read by rows.

Original entry on oeis.org

2, 1, 2, 3, 3, 2, 4, 8, 5, 2, 7, 15, 15, 7, 2, 11, 30, 35, 24, 9, 2, 18, 56, 80, 66, 35, 11, 2, 29, 104, 171, 170, 110, 48, 13, 2, 47, 189, 355, 407, 315, 169, 63, 15, 2, 76, 340, 715, 932, 832, 532, 245, 80, 17, 2
Offset: 0

Views

Author

Philippe Deléham, Nov 07 2006

Keywords

Comments

As a Riordan array, this is ((2-x)/(1-x-x^2),x/(1-x-x^2)) . Row sums form A078343, diagonals sums form A014551.

Examples

			Triangle begins:
2;
1, 2;
3, 3, 2;
4, 8, 5, 2;
7, 15, 15, 7, 2;
11, 30, 35, 24, 9, 2;
18, 56, 80, 66, 35, 11, 2;
29, 104, 171, 170, 110, 48, 13, 2;
		

Crossrefs

Formula

T(n,k)=T(n-1,k-1)+T(n-1,k)+T(n-2,k), T(0,0)=2, T(1,0)=1, T(n,k)=0 if k<0 or if k>n . T(n,0)=L(n)=A000032(n),Lucas numbers.

A141775 Binomial transform of (1, 2, 0, 1, 2, 0, 1, 2, 0, ...).

Original entry on oeis.org

1, 3, 5, 8, 15, 31, 64, 129, 257, 512, 1023, 2047, 4096, 8193, 16385, 32768, 65535, 131071, 262144, 524289, 1048577, 2097152, 4194303, 8388607, 16777216, 33554433, 67108865, 134217728, 268435455, 536870911, 1073741824, 2147483649, 4294967297, 8589934592, 17179869183
Offset: 0

Views

Author

Gary W. Adamson, Jul 03 2008

Keywords

Comments

From Paul Curtz, Jun 15 2011: (Start)
A square array of a(n) and its higher order differences is defined by T(0,k) = a(k) and T(n,k) = T(n-1,k+1)-T(n-1,k):
1, 3, 5, 8, 15, 31,
2, 2, 3, 7, 16, 33,
0, 1, 4, 9, 17, 32, see A130785(n).
1, 3, 5, 8, 15, 31,
2, 2, 3, 7, 16, 33,
a(n) is identical to its third differences: T(n+3,k) = T(n,k).
The main diagonal is T(n,n) = 2^n. Subdiagonals are T(n,n-1) = A014551(n) and T(n,n-2) = A062510(n).
(End)

Examples

			a(4) = 8 = (1, 2, 0, 1) dot (1, 3, 3, 1) = (1 + 6 + 0 + 1).
		

Crossrefs

Programs

  • Magma
    I:=[1,3,5]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2018
  • Mathematica
    LinearRecurrence[{3,-3,2},{1,3,5},40] (* Harvey P. Dale, May 29 2012 *)
  • PARI
    x='x+O('x^30); Vec((x-1)*(1+x)/((2*x-1)*(x^2-x+1))) \\ G. C. Greubel, Jan 15 2018
    

Formula

From Paul Curtz, Jun 15 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3).
a(n) = 2^n - A128834(n).
a(n) - 2a(n-1)= A057079(n+1).
a(n) + a(n+3) = 9*2^n.
a(n+6) - a(n) = 63*2^n.
a(n) = A130785(n) - A130785(n-1). (End)
G.f.: (x-1)*(1+x) / ( (2*x-1)*(x^2-x+1) ). - R. J. Mathar, Jun 22 2011
a(n) = 2^n + (2*sin((Pi*n)/3))/sqrt(3). - Colin Barker, Feb 10 2017

A171590 a(n) = 1+4^(n+1)-4*(-2)^n.

Original entry on oeis.org

1, 25, 49, 289, 961, 4225, 16129, 66049, 261121, 1050625, 4190209, 16785409, 67092481, 268468225, 1073676289, 4295098369, 17179607041, 68720001025, 274876858369, 1099513724929, 4398042316801, 17592194433025, 70368727400449
Offset: 0

Views

Author

R. J. Mathar, Dec 12 2009

Keywords

Programs

  • Magma
    I:=[1, 25, 49]; [n le 3 select I[n] else 3*Self(n-1) + 6*Self(n-2) - 8*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[(1 + 22*x - 32*x^2)/((x - 1)*(2*x + 1)*(4*x-1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)

Formula

a(n) = A105951(2n+1) = (A014551(n+1))^2.
G.f.: (1+22*x-32*x^2)/((x-1)*(2*x+1)*(4*x-1)).
a(n) = 3*a(n-1)+6*a(n-2)-8*a(n-3).

Extensions

G.f. Adapted by Vincenzo Librandi, Dec 19 2012

A245962 Triangle read by rows: T(n,k) is the number of induced subgraphs of the Lucas cube Lambda(n) that are isomorphic to the hypercube Q(k).

Original entry on oeis.org

1, 1, 3, 2, 4, 3, 7, 8, 2, 11, 15, 5, 18, 30, 15, 2, 29, 56, 35, 7, 47, 104, 80, 24, 2, 76, 189, 171, 66, 9, 123, 340, 355, 170, 35, 2, 199, 605, 715, 407, 110, 11, 322, 1068, 1410, 932, 315, 48, 2, 521, 1872, 2730, 2054, 832, 169, 13, 843, 3262, 5208, 4396, 2079, 532, 63, 2
Offset: 0

Views

Author

Emeric Deutsch, Aug 14 2014

Keywords

Comments

Number of entries in row n is 1 + floor(n/2).
The entries in row n are the coefficients of the cube polynomial of the Lucas cube Lambda(n).
For n >= 1, sum of entries in row n = A014551(n) = 2^n + (-1)^n (the Jacobsthal-Lucas numbers).
Sum_{k >= 0} k*T(n,k) = A099429(n).
T(n,0) = A000032(n) (n >= 1; the Lucas numbers); T(n,1) = A099920(n-1); T(n,2) = A245961(n).
As communicated by the authors, Theorem 5.2 and Corollary 5.3 of the Klavzar et al. paper contains a typo: 2nd binomial should be binomial(n - a - 1, a) resp. binomial(n - i - 1, i).

Examples

			Row 4 is 7, 8, 2. Indeed, the Lucas cube Lambda(4) is the graph <><> obtained by identifying a vertex of a square with a vertex of another square; it has 7 vertices (i.e., Q(0)s), 8 edges (i.e., Q(1)s), and 2 squares (i.e., Q(2)s).
Triangle starts:
   1;
   1;
   3,  2;
   4,  3;
   7,  8,  2;
  11, 15,  5;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) options operator, arrow: add((2*binomial(n-i, i)-binomial(n-i-1, i))*binomial(i, k), i = k .. floor((1/2)*n)) end proc: for n from 0 to 20 do seq(T(n, k), k = 0 .. (1/2)*n) end do; # yields sequence in triangular form
  • Mathematica
    A245962[n_, k_] := Sum[(2*Binomial[n-i, i]-Binomial[n-i-1, i])*Binomial[i, k], {i, k, n/2}]; Table[A245962[n, k], {n, 0, 15}, {k, 0, n/2}] (* Paolo Xausa, Feb 29 2024 *)

Formula

T(n,k) = Sum_{i = k..floor(n/2)} (2*binomial(n - i, i) - binomial(n - i - 1, i))*binomial(i, k).
G.f.: (1+(1+t)*z^2)/(1-z-(1+t)*z^2).
The generating polynomial of row n (i.e., the cube polynomial of Lambda(n)) is Sum_{i = 0..floor(n/2)} (2*binomial(n - i, i) - binomial(n - i - 1))(1+x)^i.
The generating polynomial of row n (i.e., the cube polynomial of Lambda(n)) is ((1+w)/2)^n + ((1-w)/2)^n, where w = sqrt(5 + 4x).
The generating function of column k (k >= 1) is z^(2k)(2-z)/(1-z-z^2)^(k+1).

A264038 Convolution of Lucas and Jacobsthal numbers.

Original entry on oeis.org

0, 2, 3, 10, 20, 47, 98, 210, 435, 902, 1848, 3775, 7670, 15542, 31403, 63330, 127500, 256367, 514938, 1033450, 2072675, 4154702, 8324528, 16673535, 33386670, 66837422, 133778523, 267724810, 535721060, 1071881327, 2144473298, 4290096450, 8582053395, 17167117142, 34339105128, 68686091455, 137384934950, 274790503142, 549614391563, 1099282801650
Offset: 0

Views

Author

Russell Jay Hendel, Nov 01 2015

Keywords

Comments

The main theorem of the Griffith-Bramham paper found in the LINKS section is the equivalence of the following alternate definitions for a(n). (I) a(n) equals the convolution of the Lucas numbers (A000032) and the Jacobsthal numbers (A001045), where, as usual, the m-th term of the convolution of sequences {b(n)}{n>=0} and {c(n)}{n>-0} equals Sum_{t+s=m} b(t)* c(s). (II) a(n) = A014551(n+1)-A000032(n+1), the difference of the Lucas-Jacobsthal numbers and the Lucas numbers with a shift of 1. The authors prove the equivalence of (I) and (II) using the generating function method.
Referring to the simplicity of definition (II), the authors formulate the following open question: "Since the convolution takes such a simple form, we ask whether it is possible to obtain a purely combinatorial proof of this result."
I would suggest another open question: Are there convolutions of other linear homogeneous recurrences with constant coefficients which are equivalent to very simple forms?

Examples

			Let L(n)=A000032(n), j(n)=A014551(n), and J(n)=A001045(n). Then using the convolution definition (I), a(3)=10 because a(3) = L(0)J(3) + L(1)J(2) + L(2)J(1) + L(3)J(0) = 2*3 + 1*1 + 3*1 + 4*0 = 10; similarly, using definition (II) we have a(3) = j(4) - L(4) = 17 - 7 = 10.
		

Crossrefs

Equals convolution of Lucas numbers (A000032) and Jacobsthal numbers (A001045); also equals difference of Lucas-Jacobsthal numbers (A014551) minus Lucas numbers (A000032) with a shift of 1.

Programs

  • Mathematica
    LinearRecurrence[{1,2},{1,5},40]-LinearRecurrence[{1,1},{1,3},40]
    LinearRecurrence[{2,2,-3,-2},{0,2,3,10},50] (* Harvey P. Dale, Dec 11 2016 *)
  • PARI
    /* Prints first 40 terms of sequence a(n) */
    Lucas(n)={if(n==0,2,if(n==1,1,Lucas(n-1)+Lucas(n-2)));}
    j(n)={if(n==0,2,if(n==1,1,j(n-1)+2*j(n-2)));} /*Lucas-Jacobsthal*/
    a(n)=j(n+1)-Lucas(n+1);
    for(n=0,40,print(a(n)));
    
  • PARI
    concat(0, Vec(-x*(x-2)/((x+1)*(2*x-1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Nov 02 2015

Formula

a(n) = A014551(n+1)- A000032(n+1).
G.f.: 2/(1-2x)-1/(1+x)-alpha/(1-alpha*x)-beta/(1-beta*x) with alpha=(1+sqrt(5))/2 and beta=-1/alpha.
From Colin Barker, Nov 02 2015: (Start)
a(n) = 2*a(n-1)+2*a(n-2)-3*a(n-3)-2*a(n-4) for n > 3.
G.f.: 2/(1-2x)-1/(1+x)-alpha/(1-alpha*x)-beta/(1-beta*x)=-x*(x-2) / ((x+1)*(2*x-1)*(x^2+x-1)), with alpha = (sqrt(5)+1)/2, and beta=-1/alpha.(End)
Previous Showing 41-50 of 60 results. Next