cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 93 results. Next

A069279 Products of exactly 18 primes (generalization of semiprimes).

Original entry on oeis.org

262144, 393216, 589824, 655360, 884736, 917504, 983040, 1327104, 1376256, 1441792, 1474560, 1638400, 1703936, 1990656, 2064384, 2162688, 2211840, 2228224, 2293760, 2457600, 2490368, 2555904, 2985984, 3014656, 3096576, 3211264, 3244032, 3317760, 3342336, 3440640
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 18 not necessarily distinct primes.
Divisible by exactly 18 prime powers (not including 1).

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), this sequence (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[31*10^5],PrimeOmega[#]==18&] (* Harvey P. Dale, Apr 05 2015 *)
  • PARI
    k=18; start=2^k; finish=4000000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A069279(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,18)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with Sum e_i = 18.

A069281 20-almost primes (generalization of semiprimes).

Original entry on oeis.org

1048576, 1572864, 2359296, 2621440, 3538944, 3670016, 3932160, 5308416, 5505024, 5767168, 5898240, 6553600, 6815744, 7962624, 8257536, 8650752, 8847360, 8912896, 9175040, 9830400, 9961472, 10223616, 11943936, 12058624
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 20 not necessarily distinct primes.
Divisible by exactly 20 prime powers (not including 1).
Any 20-almost prime can be represented in several ways as a product of two 10-almost primes A046314; in several ways as a product of four 5-almost primes A014614; in several ways as a product of five 4-almost primes A014613; and in several ways as a product of ten semiprimes A001358. - Jonathan Vos Post, Dec 12 2004

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), this sequence (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[2*9!,5*10! ],Plus@@Last/@FactorInteger[ # ]==20 &] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *)
  • PARI
    k=20; start=2^k; finish=15000000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v \\ Depending upon the size of k and how many terms are needed, a much more efficient algorithm than the brute-force method above may be desirable. See additional comments in this section of A069280.
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A069281(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,20)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with Sum e_i = 20.
a(n) = A078840(20,n). - R. J. Mathar, Jan 30 2019

A069275 14-almost primes (generalization of semiprimes).

Original entry on oeis.org

16384, 24576, 36864, 40960, 55296, 57344, 61440, 82944, 86016, 90112, 92160, 102400, 106496, 124416, 129024, 135168, 138240, 139264, 143360, 153600, 155648, 159744, 186624, 188416, 193536, 200704, 202752, 207360, 208896, 215040, 225280
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 14 not necessarily distinct primes.
Divisible by exactly 14 prime powers (not including 1).
Any 14-almost prime can be represented in several ways as a product of two 7-almost primes A046308; and in several ways as a product of seven semiprimes A001358. - Jonathan Vos Post, Dec 11 2004

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), this sequence(r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[50000], Plus @@ Last /@ FactorInteger[ # ] == 14 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
  • PARI
    k=14; start=2^k; finish=240000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A069275(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,14)))
        return bisection(f,n,n) # Chai Wah Wu, Nov 03 2024

Formula

Product p_i^e_i with Sum e_i = 14.

A069276 15-almost primes (generalization of semiprimes).

Original entry on oeis.org

32768, 49152, 73728, 81920, 110592, 114688, 122880, 165888, 172032, 180224, 184320, 204800, 212992, 248832, 258048, 270336, 276480, 278528, 286720, 307200, 311296, 319488, 373248, 376832, 387072, 401408, 405504, 414720, 417792, 430080
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 15 not necessarily distinct primes.
Divisible by exactly 15 prime powers (not including 1).
Any 15-almost prime can be represented in several ways as a product of three 5-almost primes A014614, and in several ways as a product of five 3-almost primes A014612. - Jonathan Vos Post, Dec 11 2004

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), this sequence (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[90000], Plus @@ Last /@ FactorInteger[ # ] == 15 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[450000],PrimeOmega[#]==15&] (* Harvey P. Dale, Aug 14 2019 *)
  • PARI
    k=15; start=2^k; finish=500000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A069276(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,15)))
        return bisection(f,n,n) # Chai Wah Wu, Nov 03 2024

Formula

Product p_i^e_i with Sum e_i = 15.

A069277 16-almost primes (generalization of semiprimes).

Original entry on oeis.org

65536, 98304, 147456, 163840, 221184, 229376, 245760, 331776, 344064, 360448, 368640, 409600, 425984, 497664, 516096, 540672, 552960, 557056, 573440, 614400, 622592, 638976, 746496, 753664, 774144, 802816, 811008, 829440, 835584, 860160
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 16 not necessarily distinct primes.
Divisible by exactly 16 prime powers (not including 1).
Any 16-almost prime can be represented in several ways as a product of two 8-almost primes A046310; in several ways as a product of four 4-almost primes A014613; and in several ways as a product of eight semiprimes A001358. - Jonathan Vos Post, Dec 12 2004

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), this sequence (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[300000], Plus @@ Last /@ FactorInteger[ # ] == 16 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[10^6],PrimeOmega[#]==16&] (* Harvey P. Dale, Jan 30 2015 *)
  • PARI
    k=16; start=2^k; finish=1000000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A069277(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,16)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Formula

Product p_i^e_i with Sum e_i = 16.

A069274 13-almost primes (generalization of semiprimes).

Original entry on oeis.org

8192, 12288, 18432, 20480, 27648, 28672, 30720, 41472, 43008, 45056, 46080, 51200, 53248, 62208, 64512, 67584, 69120, 69632, 71680, 76800, 77824, 79872, 93312, 94208, 96768, 100352, 101376, 103680, 104448, 107520, 112640, 115200
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 13 not necessarily distinct primes.
Divisible by exactly 13 prime powers (not including 1).

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), this sequence (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[30000], Plus @@ Last /@ FactorInteger[ # ] == 13 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[116000],PrimeOmega[#]==13&] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    k=13; start=2^k; finish=130000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A067274(n):
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 13)))
        return bisection(f, n, n) # Chai Wah Wu, Nov 03 2024

Formula

Product p_i^e_i with Sum e_i = 13.

A069278 17-almost primes (generalization of semiprimes).

Original entry on oeis.org

131072, 196608, 294912, 327680, 442368, 458752, 491520, 663552, 688128, 720896, 737280, 819200, 851968, 995328, 1032192, 1081344, 1105920, 1114112, 1146880, 1228800, 1245184, 1277952, 1492992, 1507328, 1548288, 1605632, 1622016
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 17 not necessarily distinct primes.
Divisible by exactly 17 prime powers (not including 1).
For n = 1..2628 a(n)=2*A069277(n). - Zak Seidov, Jun 25 2017

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), this sequence (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[2*10^6],PrimeOmega[#]==17&] (* Harvey P. Dale, Sep 28 2016 *)
  • PARI
    k=17; start=2^k; finish=2000000; v=[]
    for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A069278(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,17)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Formula

Product p_i^e_i with Sum e_i = 17.

A069280 19-almost primes (generalization of semiprimes).

Original entry on oeis.org

524288, 786432, 1179648, 1310720, 1769472, 1835008, 1966080, 2654208, 2752512, 2883584, 2949120, 3276800, 3407872, 3981312, 4128768, 4325376, 4423680, 4456448, 4587520, 4915200, 4980736, 5111808, 5971968, 6029312, 6193152
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 19 not necessarily distinct primes.
Divisible by exactly 19 prime powers (not including 1).

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), this sequence (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • PARI
    k=19; start=2^k; finish=8000000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A069280(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,19)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with Sum e_i = 19.

A046303 Product of 5 successive primes.

Original entry on oeis.org

2310, 15015, 85085, 323323, 1062347, 2800733, 6678671, 14535931, 31367009, 58642669, 95041567, 162490421, 259106347, 385499687, 600662303, 907383479, 1249792339, 1673450759, 2276990377, 3024658859, 4132280413, 5717264681
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..4] ]: n in [1..22]];  // Bruno Berselli, Feb 25 2011
    
  • Mathematica
    lst={};Do[p0=Prime[n];p1=Prime[n+1];p2=Prime[n+2];p3=Prime[n+3];p4=Prime[n+4];a=p0*p1*p2*p3*p4;AppendTo[lst,a],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)
    Times@@@Partition[Prime[Range[200]],5,1] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    first(n)=my(P=primes(n+4)); vector(n,i,prod(j=i,i+4,P[j])) \\ Charles R Greathouse IV, Jun 27 2019

Formula

a(n) = Product_{j=n..n+4} prime(j). - Jon E. Schoenfield, Jan 07 2015
a(n) ~ (n log n)^5. - Charles R Greathouse IV, Jun 27 2019

A101637 a(n) = 1 if n is a 4-almost prime, that is a product of exactly four (not necessarily distinct) primes, 0 otherwise.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Jonathan Vos Post, Dec 10 2004

Keywords

Comments

Characteristic function of A014613.
See A101638 for the inverse Moebius transform of this sequence.

Examples

			a(100) = 1 because 100 = 2 * 2 * 5 * 5 is the product of exactly 4 primes and thus is a 4-almost prime.
		

Crossrefs

Programs

Extensions

Name edited by Antti Karttunen, Oct 08 2017
Previous Showing 21-30 of 93 results. Next