cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A001468 There are a(n) 2's between successive 1's.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The Fibonacci word on the alphabet {2,1}, with an extra 1 in front. - Michel Dekking, Nov 26 2018
Start with 1, apply 1->12, 2->122, take limit. - Philippe Deléham, Sep 23 2005
Also number of occurrences of n in Hofstadter G-sequence (A005206) and in A019446. - Reinhard Zumkeller, Feb 02 2012, Aug 07 2011
A block-fractal sequence: every block occurs infinitely many times. Also a reverse block-fractal sequence. See A280511. - Clark Kimberling, Jan 06 2017

References

  • D. Gault and M. Clint, "Curiouser and curiouser" said Alice. Further reflections on an interesting recursive function, Internat. J. Computer Math., 26 (1988), 35-43. See Table 2.
  • D. R. Hofstadter, personal communication, Jul 15 1977.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as A014675 if initial 1 is deleted. Cf. A003849, A000201, A280511.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    import Data.List (group)
    a001468 n = a001468_list !! n
    a001468_list = map length $ group a005206_list
    -- Reinhard Zumkeller, Aug 07 2011
    
  • Maple
    Digits := 100: t := evalf( (1+sqrt(5))/2); A001468 := n-> floor((n+1)*t)-floor(n*t);
  • Mathematica
    Table[Floor[GoldenRatio*(n + 1)] - Floor[GoldenRatio*n], {n, 0, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
    Nest[ Flatten[# /. {1 -> {1, 2}, 2 -> {1, 2, 2}}] &, {1}, 6] (* Robert G. Wilson v, May 20 2014 and corrected Apr 24 2017 following Clark Kimberling's email of Mar 22 2017 *)
    SubstitutionSystem[{1->{1,2},2->{1,2,2}},{1},{6}][[1]] (* Harvey P. Dale, Jan 31 2022 *)
  • PARI
    a=[1];for(i=1,30,a=concat([a,vector(a[i],j,2),1]));a \\ Or compute as A001468(n)=A201(n+1)-A201(n) with A201(n)=(n+sqrtint(5*n^2))\2, working for n>=0 although A000201 is defined for n>=1. - M. F. Hasler, Oct 13 2017
    
  • Python
    def A001468(length):
        a = [1]
        for i in range(length):
            for _ in range(a[i]):
                a.append(2)
            a.append(1)
            if len(a)>=length:
                break
        return a[:length] # Nicholas Stefan Georgescu, Jun 02 2022
    
  • Python
    from math import isqrt
    def A001468(n): return (n+1+isqrt(m:=5*(n+1)**2)>>1)-(n+isqrt(m-10*n-5)>>1) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = [(n+1) tau] - [n tau], tau = (1 + sqrt 5)/2 = A001622, [] = floor function.
a(n) = A000201(n+1) - A000201(n) = A022342(n+1) - A022342(n), n >= 1; i.e., the first term discarded, this yields the first differences of A000201 and A022342. - M. F. Hasler, Oct 13 2017

Extensions

Rechecked by N. J. A. Sloane, Nov 07 2001

A001030 Fixed under 1 -> 21, 2 -> 211.

Original entry on oeis.org

2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Keywords

Comments

If treated as the terms of a continued fraction, it converges to approximately
2.57737020881617828717350576260723346479894963737498275232531856357441\
7024804797827856956758619431996. - Peter Bertok (peter(AT)bertok.com), Nov 27 2001
There are a(n) 1's between successive 2's. - Eric Angelini, Aug 19 2008
Same sequence where 1's and 2's are exchanged: A001468. - Eric Angelini, Aug 19 2008

References

  • Midhat J. Gazale, Number: From Ahmes to Cantor, Section on 'Cleavages' in Chapter 6, Princeton University Press, Princeton, NJ 2000, pp. 203-211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Length of the sequence after 'n' substitution steps is given by the terms of A000129.
Equals A004641(n) + 1.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    Following Spage's PARI program.
    a001030 n = a001030_list !! (n-1)
    a001030_list = [2, 1, 1, 2] ++ f [2] [2, 1, 1, 2] where
       f us vs = ws ++ f vs (vs ++ ws) where
                 ws = 1 : us ++ 1 : vs
    -- Reinhard Zumkeller, Aug 04 2014
    
  • Mathematica
    ('n' is the number of substitution steps to perform.) Nest[Flatten[ # /. {1 -> {2, 1}, 2 -> {2, 1, 1}}] &, {1}, n]
    SubstitutionSystem[{1->{2,1},2->{2,1,1}},{2},{6}][[1]] (* Harvey P. Dale, Feb 15 2022 *)
  • PARI
    /* Fast string concatenation method giving e.g. 5740 terms in 8 iterations */
    a="2";b="2,1,1,2";print1(b);for(x=1,8,c=concat([",1,",a,",1,",b]);print1(c);a=b;b=concat(b,c)) \\ K. Spage, Oct 08 2009
    
  • Python
    from math import isqrt
    def A001030(n): return [2, 1, 1, 2, 1, 2, 1, 2][n-1] if n < 9 else -isqrt(m:=(n-9)*(n-9)<<1)+isqrt(m+(n-9<<2)+2) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = -1 + floor(n*(1+sqrt(2))+1/sqrt(2))-floor((n-1)*(1+sqrt(2))+1/sqrt(2)). - Benoit Cloitre, Jun 26 2004. [I don't know if this is a theorem or a conjecture. - N. J. A. Sloane, May 14 2008]
This is a theorem, following from Hofstadter's Generalized Fundamental Theorem of eta-sequences on page 10 of Eta-Lore. See also de Bruijn's paper from 1981 (hint from Benoit Cloitre). - Michel Dekking, Jan 22 2017

Extensions

More terms from Peter Bertok (peter(AT)bertok.com), Nov 27 2001

A004641 Fixed under 0 -> 10, 1 -> 100.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Partial sums: A088462. - Reinhard Zumkeller, Dec 05 2009
Write w(n) = a(n) for n >= 1. Each w(n) is generated by w(i) for exactly one i <= n; let g(n) = i. Each w(i) generates a single 1, in a word (10 or 100) that starts with 1. Therefore, g(n) is the number of 1s among w(1), ..., w(n), so that g = A088462. That is, this sequence is generated by its partial sums. - Clark Kimberling, May 25 2011

Crossrefs

Equals A001030 - 1. Essentially the same as A006337 - 1 and A159684.
Characteristic function of A086377.
Cf. A081477.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [Floor(n*(Sqrt(2) - 1) + Sqrt(1/2)) - Floor((n - 1)*(Sqrt(2) - 1) + Sqrt(1/2)): n in [0..100]]; // Vincenzo Librandi, Mar 27 2015
    
  • Maple
    P(0):= (1,0): P(1):= (1,0,0):
    ((P~)@@6)([1]);
    # in Maple 12 or earlier, comment the above line and uncomment the following:
    # (curry(map,P)@@6)([1]); # Robert Israel, Mar 26 2015
  • Mathematica
    Nest[ Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 0}}] &, {1}, 5] (* Robert G. Wilson v, May 25 2011 *)
    SubstitutionSystem[{0->{1,0},1->{1,0,0}},{1},5]//Flatten (* Harvey P. Dale, Nov 20 2021 *)
  • Python
    from math import isqrt
    def A004641(n): return [1, 0, 0, 1, 0, 1, 0, 1][n-1] if n < 9 else -1-isqrt(m:=(n-9)*(n-9)<<1)+isqrt(m+(n-9<<2)+2) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = floor(n*(sqrt(2) - 1) + sqrt(1/2)) - floor((n - 1)*(sqrt(2) - 1) + sqrt(1/2)) (from the de Bruijn reference). - Peter J. Taylor, Mar 26 2015
From Jianing Song, Jan 02 2019: (Start)
a(n) = A001030(n) - 1.
a(n) = A006337(n-9) - 1 = A159684(n-10) for n >= 10. (End)

A014565 Decimal expansion of rabbit constant.

Original entry on oeis.org

7, 0, 9, 8, 0, 3, 4, 4, 2, 8, 6, 1, 2, 9, 1, 3, 1, 4, 6, 4, 1, 7, 8, 7, 3, 9, 9, 4, 4, 4, 5, 7, 5, 5, 9, 7, 0, 1, 2, 5, 0, 2, 2, 0, 5, 7, 6, 7, 8, 6, 0, 5, 1, 6, 9, 5, 7, 0, 0, 2, 6, 4, 4, 6, 5, 1, 2, 8, 7, 1, 2, 8, 1, 4, 8, 4, 6, 5, 9, 6, 2, 4, 7, 8, 3, 1, 6, 1, 3, 2, 4, 5, 9, 9, 9, 3, 8, 8, 3, 9, 2, 6, 5
Offset: 0

Views

Author

Eric W. Weisstein, Dec 11 1999

Keywords

Comments

Davison shows that the continued fraction is (essentially) A000301 and proves that this constant is transcendental. - Charles R Greathouse IV, Jul 22 2013
Using Davison's result we can find an alternating series representation for the rabbit constant r as r = 1 - sum {n >= 1} (-1)^(n+1)*(1 + 2^Fibonacci(3*n+1))/( (2^(Fibonacci(3*n - 1)) - 1)*(2^(Fibonacci(3*n + 2)) - 1) ). The series converges rapidly: for example, the first 10 terms of the series give a value for r accurate to more than 1.7 million decimal places. See A005614. - Peter Bala, Nov 11 2013
The rabbit constant is the number having the infinite Fibonacci word A005614 as binary expansion; its continued fraction expansion is A000301 = 2^A000045 (after a leading zero, depending on convention). - M. F. Hasler, Nov 10 2018

Examples

			0.709803442861291314641787399444575597012502205767...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 439.
  • M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, New York: W. H. Freeman, 1991.

Crossrefs

Programs

  • Mathematica
    Take[ RealDigits[ Sum[N[1/2^Floor[k*GoldenRatio], 120], {k, 0, 300}]-1][[1]], 103] (* Jean-François Alcover, Jul 28 2011, after Benoit Cloitre *)
    RealDigits[ FromDigits[{Nest[Flatten[# /. {0 -> {1}, 1 -> {1, 0}}] &, {1}, 12], 0}, 2], 10, 111][[1]] (* Robert G. Wilson v, Mar 13 2014 *)
    digits = 103; dm = 10; Clear[xi]; xi[b_, m_] := xi[b, m] = RealDigits[ ContinuedFractionK[1, b^Fibonacci[k], {k, 0, m}], 10, digits] // First; xi[2, dm]; xi[2, m = 2 dm]; While[xi[2, m] != xi[2, m - dm], m = m + dm]; xi[2, m] (* Jean-François Alcover, Mar 04 2015, update for versions 7 and up, after advice from Oleg Marichev *)
  • PARI
    /* fast divisionless routine from fxtbook */
    fa(y, N=17)=
    { my(t, yl, yr, L, R, Lp, Rp);
    /* as powerseries correct up to order fib(N+2)-1 */
      L=0; R=1; yl=1; yr=y;
      for(k=1, N, t=yr; yr*=yl; yl=t; Lp=R; Rp=R+yr*L; L=Lp; R=Rp; );
      return( R )
    }
    a=0.5*fa(0.5) /* Joerg Arndt, Apr 15 2010 */
    
  • PARI
    my(r=1,p=(3-sqrt(5))/2,n=1);while(r>r-=1.>>(n\p),n++);A014565=r \\ M. F. Hasler, Nov 10 2018
    
  • PARI
    my(f(n)=1.<A098317 (=> 298, 1259, 5331, ... digits). - M. F. Hasler, Nov 10 2018

Formula

Equals Sum_{n>=1} 1/2^b(n) where b(n) = floor(n*phi) = A000201(n).
Equals -1 + A073115.
From Peter Bala, Nov 04 2013: (Start)
The results of Adams and Davison 1977 can be used to find a variety of alternative series representations for the rabbit constant r. Here are several examples (phi denotes the golden ratio (1/2)*(1 + sqrt(5))).
r = Sum_{n >= 2} ( floor((n+1)*phi) - floor(n*phi) )/2^n = (1/2)*Sum_{n >= 1} A014675(n)/2^n.
r = Sum_{n >= 1} floor(n/phi)/2^n = Sum_{n >= 1} A005206(n-1)/2^n.
r = ( Sum_{n >= 1} 1/2^floor(n/phi) ) - 2 and r = ( Sum_{n >= 1} floor(n*phi)/2^n ) - 2 = ( Sum_{n >= 1} A000201(n)/2^n ) - 2.
More generally, for integer N >= -1, r = ( Sum_{n >= 1} 1/2^floor(n/(phi + N)) ) - (2*N + 2) and for all integer N, r = ( Sum_{n >= 1} floor(n*(phi + N))/2^n ) - (2*N + 2).
Also r = 1 - Sum_{n >= 1} 1/2^floor(n*phi^2) = 1 - Sum_{n >= 1} 1/2^A001950(n) and r = 1 - Sum_{n >= 1} floor(n*(2 - phi))/2^n = 1 - Sum_{n >= 1} A060144(n)/2^n. (End)

Extensions

More terms from Simon Plouffe, Dec 11 1999

A088462 a(1)=1, a(n) = ceiling((n - a(a(n-1)))/2).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 32
Offset: 1

Views

Author

Benoit Cloitre, Nov 12 2003

Keywords

Comments

Partial sums of A004641. - Reinhard Zumkeller, Dec 05 2009
This sequence generates A004641; see comment at A004641. - Clark Kimberling, May 25 2011

Crossrefs

Cf. A005206.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [Floor((Sqrt(2)-1)*n+1/Sqrt(2)): n in [1..100]]; // Vincenzo Librandi, Jun 26 2017
  • Mathematica
    Table[Floor[(Sqrt[2] - 1) n + 1 / Sqrt[2]], {n, 100}] (* Vincenzo Librandi, Jun 26 2017 *)
  • Python
    l=[0, 1, 1]
    for n in range(3, 101): l.append(n - l[n - 1] - l[l[n - 2]])
    print(l[1:]) # Indranil Ghosh, Jun 24 2017, after Altug Alkan
    

Formula

a(n) = floor((sqrt(2)-1)*n + 1/sqrt(2)).
a(1) = a(2) = 1; a(n) = n - a(n-1) - a(a(n-2)) for n > 2. - Altug Alkan, Jun 24 2017

A114986 Characteristic function of (A000201 prefixed with 0).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2006

Keywords

Crossrefs

Essentially the same as A005614. Cf. A096270, A189479.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

A124841 Inverse binomial transform of A005614, the rabbit sequence: (1, 0, 1, 1, 0, ...).

Original entry on oeis.org

1, -1, 2, -3, 3, 0, -10, 35, -90, 200, -400, 726, -1188, 1716, -2080, 1820, -312, -2704, 5408, 455, -39195, 170313, -523029, 1352078, -3114774, 6548074, -12668578, 22492886, -36020998, 49549110, -49549110, 0, 182029056, -670853984, 1809734560, -4242470755
Offset: 0

Views

Author

Gary W. Adamson, Nov 10 2006

Keywords

Comments

As with every inverse binomial transform, the numbers are given by starting from the sequence (A005614) and reading the leftmost values of the array of repeated differences.

Examples

			Given 1, 0, 1, 1, 0, ..., take finite difference rows:
1, 0, 1, 1, 0, ...
_-1, 1, 0, -1, ...
___ 2, -1, -1, ...
_____ -3, 0, ...
________ 3, ...
Left border becomes the sequence.
		

Crossrefs

Cf. A124842.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Mathematica
    A005614 = SubstitutionSystem[{0 -> {1}, 1 -> {1, 0}}, {1, 0}, 7] // Last;
    Table[Differences[A005614, n], {n, 0, 35}][[All, 1]] (* Jean-François Alcover, Feb 06 2020 *)

Extensions

Corrected and extended by R. J. Mathar, Nov 28 2011

A025143 Unique sequence a of 1's and 2's such that a(1) = 2 and r(r(a)) = a != r(a), where for any sequence s, r(s) is the sequence of lengths of runs of same symbols in s; r(a) is sequence A025142.

Original entry on oeis.org

2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Keywords

References

  • C. Kimberling, Problem 90: Run-length sequences, Mathematische Semesterberichte, 44 (1997) 94-95.

Crossrefs

Cf. A025142.
Differs from A014675 in many entries starting at entry 8.
Cf. A078880 (satisfies s = r(s)), A288724 (satisfies s = r(r(r(s)))).

A076662 First differences of A007066.

Original entry on oeis.org

3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, based on information supplied by Matthew Vandermast, Mar 25 2003

Keywords

Crossrefs

Formula

3 followed by the Fibonacci string A003849 written using 3's and 2's.

A082389 a(n) = floor((n+2)*phi) - floor((n+1)*phi) where phi=(1+sqrt(5))/2.

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2003

Keywords

Comments

Alternative descriptions (1): unique positive integer sequence taking values in {1,2} satisfying a(1)=1, a(2)=2 and a(a(1)+...+a(n))=a(n) for n >= 3.
(2) Start with 1,2; then for any k>=1, a(a(1)+...+a(k))=a(k), fill in any undefined terms by the rule that a(t) = 1 if a(t-1) = 2 and a(t) = 2 if a(t-1) = 1.
(3) a(1)= 1, a(2)=2, a(a(1)+a(2)+...+a(n))=a(n); a(a(1)+a(2)+...+a(n)+1)=3-a(n).
More generally, the sequence a(n)=floor(r*(n+2))-floor(r*(n+1)), r= (1/2) *(z+sqrt(z^2+4)), z integer >=1, is defined by a(1), a(2) and a(a(1)+a(2)+...+a(n)+f(z))=a(n); a(a(1)+a(2)+...+a(n)+f(z)+1)=(2z+1)-a(n) where f(1)=0, f(z)=z-2 for z>=2.

Examples

			a(1)+a(2)=3 and a(a(1)+a(2)) must be a(2) so a(3)=2. Therefore a(a(1)+a(2)+a(3))=a(5)=2 and from the rule the "hole" a(4) is 1. Hence sequence begins 1,2,2,1,2,...
		

Crossrefs

Same as A014675 without the first term.

Programs

  • Maple
    A082389:=n->floor((n+2)*(1+sqrt(5))/2) - floor((n+1)*(1+sqrt(5))/2): seq(A082389(n), n=1..300); # Wesley Ivan Hurt, Jan 16 2017
  • Mathematica
    Rest@Nest[ Flatten[ # /. {1 -> 2, 2 -> {2, 1}}] &, {1}, 11] (* Robert G. Wilson v, Jan 26 2006 *)
    #[[2]]-#[[1]]&/@Partition[Table[Floor[GoldenRatio n],{n,0,110}],2,1] (* Harvey P. Dale, Sep 04 2019 *)
    Differences[Floor[GoldenRatio Range[2,150]]] (* Harvey P. Dale, Dec 02 2024 *)
  • Python
    from math import isqrt
    def A082389(n): return (n+2+isqrt(m:=5*(n+2)**2)>>1)-(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 29 2022

Formula

a(n) = A014675(n+1); sum(k = 1, n, a(k)) = A058065(n)
Apparently a(n) = A059426(n).
a(n) = A066096(n+2)-A066096(n+1). - R. J. Mathar, Aug 02 2024
Previous Showing 21-30 of 45 results. Next