cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A108171 Tribonacci version of A076662 using beta positive real Pisot root of x^3 - x^2 - x - 1.

Original entry on oeis.org

4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3
Offset: 0

Views

Author

Roger L. Bagula, Jun 13 2005

Keywords

Comments

Three part composition of sequence based on the Fibonacci substitution twos order.

Crossrefs

Programs

  • Mathematica
    NSolve[x^3 - x^2 - x - 1 = 0, x] beta = 1.8392867552141612 a[n_] = 1 + Ceiling[(n - 1)*beta^2] (* A007066 like*) aa = Table[a[n], {n, 1, 100}] (* A076662-like *) b = Table[a[n] - a[n - 1], {n, 2, Length[aa]}] F[1] = 2; F[n_] := F[n] = F[n - 1] + b[[n]] (* A000195-like *) c = Table[F[n], {n, 1, Length[b] - 1}]

Formula

b(n) = 1 + ceiling((n-1)*beta); a(n) = b(n) - b(n-1).

A001950 Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.

Original entry on oeis.org

2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157
Offset: 1

Views

Author

Keywords

Comments

Indices at which blocks (1;0) occur in infinite Fibonacci word; i.e., n such that A005614(n-2) = 0 and A005614(n-1) = 1. - Benoit Cloitre, Nov 15 2003
A000201 and this sequence may be defined as follows: Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
a(n) = n-th integer which is not equal to the floor of any multiple of phi, where phi = (1+sqrt(5))/2 = golden number. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), May 09 2007
Write A for A000201 and B for the present sequence (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB, ..., BBB, ... appear in many complementary equations having solution A000201 (or equivalently, the present sequence). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Apart from the initial 0 in A090909, is this the same as that sequence? - Alec Mihailovs (alec(AT)mihailovs.com), Jul 23 2007
If we define a base-phi integer as a positive number whose representation in the golden ratio base consists only of nonnegative powers of phi, and if these base-phi integers are ordered in increasing order (beginning 1, phi, ...), then it appears that the difference between the n-th and (n-1)-th base-phi integer is phi-1 if and only if n belongs to this sequence, and the difference is 1 otherwise. Further, if each base-phi integer is written in linear form as a + b*phi (for example, phi^2 is written as 1 + phi), then it appears that there are exactly two base-phi integers with b=n if and only if n belongs to this sequence, and exactly three base-phi integers with b=n otherwise. - Geoffrey Caveney, Apr 17 2014
Numbers with an odd number of trailing zeros in their Zeckendorf representation (A014417). - Amiram Eldar, Feb 26 2021
Numbers missing from A066096. - Philippe Deléham, Jan 19 2023

Examples

			From _Paul Weisenhorn_, Aug 18 2012 and Aug 21 2012: (Start)
a(14) = floor(14*phi^2) = 36; a'(14) = floor(14*phi)=22;
with r=9 and j=1: a(13+1) = 34 + 2 = 36;
with r=8 and j=1: a'(13+1) = 21 + 1 = 22.
k=6 and a(5)=13 < n <= a(6)=15
a(14) = 3*14 - 6 = 36; a'(14) = 2*14 - 6 = 22;
a(15) = 3*15 - 6 = 39; a'(15) = 2*15 - 6 = 24. (End)
		

References

  • Claude Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 324, Problem 2.
  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019.
  • Martin Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = greatest k such that s(k) = n, where s = A026242.
Complement of A000201 or A066096.
A002251 maps between A000201 and A001950, in that A002251(A000201(n)) = A001950(n), A002251(A001950(n)) = A000201(n).
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
First differences give (essentially) A076662.
Bisections: A001962, A001966.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a001950 n = a000201 n + n  -- Reinhard Zumkeller, Mar 10 2013
    
  • Magma
    [Floor(n*((1+Sqrt(5))/2)^2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
    
  • Maple
    A001950 := proc(n)
        floor(n*(3+sqrt(5))/2) ;
    end proc:
    seq(A001950(n),n=0..40) ; # R. J. Mathar, Jul 16 2024
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])^2/4]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio^2] &, 60] (* Robert G. Wilson v, Apr 17 2010 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+3)/2)
    
  • PARI
    A001950(n)=(sqrtint(n^2*5)+n*3)\2 \\ M. F. Hasler, Sep 17 2014
    
  • Python
    from math import isqrt
    def A001950(n): return (n+isqrt(5*n**2)>>1)+n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = n + floor(n*phi). In general, floor(n*phi^m) = Fibonacci(m-1)*n + floor(Fibonacci(m)*n*phi). - Benoit Cloitre, Mar 18 2003
a(n) = n + floor(n*phi) = n + A000201(n). - Paul Weisenhorn and Philippe Deléham
Append a 0 to the Zeckendorf expansion (cf. A035517) of n-th term of A000201.
a(n) = A003622(n) + 1. - Philippe Deléham, Apr 30 2004
a(n) = Min(m: A134409(m) = A006336(n)). - Reinhard Zumkeller, Oct 24 2007
If a'=A000201 is the ordered complement (in N) of {a(n)}, then a(Fib(r-2) + j) = Fib(r) + a(j) for 0 < j <= Fib(r-2), 3 < r; and a'(Fib(r-1) + j) = Fib(r) + a'(j) for 0 < j <= Fib(r-2), 2 < r. - Paul Weisenhorn, Aug 18 2012
With a(1)=2, a(2)=5, a'(1)=1, a'(2)=3 and 1 < k and a(k-1) < n <= a(k) one gets a(n)=3*n-k, a'(n)=2*n-k. - Paul Weisenhorn, Aug 21 2012

Extensions

Corrected by Michael Somos, Jun 07 2000

A003849 The infinite Fibonacci word (start with 0, apply 0->01, 1->0, take limit).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

A Sturmian word.
Define strings S(0)=0, S(1)=01, S(n)=S(n-1)S(n-2); iterate; sequence is S(infinity). If the initial 0 is omitted from S(n) for n>0, we obtain A288582(n+1).
The 0's occur at positions in A022342 (i.e., A000201 - 1), the 1's at positions in A003622.
Replace each run (1;1) with (1;0) in the infinite Fibonacci word A005614 (and add 0 as prefix) A005614 begins: 1,0,1,1,0,1,0,1,1,0,1,1,... changing runs (1,1) with (1,0) produces 1,0,0,1,0,1,0,0,1,0,0,1,... - Benoit Cloitre, Nov 10 2003
Characteristic function of A003622. - Philippe Deléham, May 03 2004
The fraction of 0's in the first n terms approaches 1/phi (see for example Allouche and Shallit). - N. J. A. Sloane, Sep 24 2007
The limiting mean and variance of the first n terms are 2-phi and 2*phi-3, respectively. - Clark Kimberling, Mar 12 2014, Aug 16 2018
Let S(n) be defined as above. Then this sequence is S(1) + Sum_{n=0..} S(n), where the addition of strings represents concatenation. - Isaac Saffold, May 03 2019
The word is a concatenation of three runs: 0, 1, and 00. The limiting proportions of these are respectively 1 - phi/2, 1/2, and (phi - 1)/2. The mean runlength is (phi + 1)/2. - Clark Kimberling, Dec 26 2010
From Amiram Eldar, Mar 10 2021: (Start)
a(n) is the number of the trailing 0's in the dual Zeckendorf representation of (n+1) (A104326).
The asymptotic density of the occurrences of k (0 or 1) is 1/phi^(k+1), where phi is the golden ratio (A001622).
The asymptotic mean of this sequence is 1/phi^2 (A132338). (End)

Examples

			The word is 010010100100101001010010010100...
Over the alphabet {a,b} this is a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, ...
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
  • Jean Berstel, Fibonacci words—a survey, In The book of L, pp. 13-27. Springer Berlin Heidelberg, 1986.
  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc. - see p. 64.
  • Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (edts.) Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337. [See A317208 for a link.]
  • G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

There are several versions of this sequence in the OEIS. This one and A003842 are probably the most important. See also A008352, A076662, A288581, A288582.
Positions of 1's gives A003622.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a003849 n = a003849_list !! n
    a003849_list = tail $ concat fws where
       fws = [1] : [0] : (zipWith (++) fws $ tail fws)
    -- Reinhard Zumkeller, Nov 01 2013, Apr 07 2012
    
  • Magma
    t1:=[ n le 2 select ["0","0,1"][n] else Self(n-1) cat "," cat Self(n-2) : n in [1..12]]; t1[12];
    
  • Maple
    z := proc(m) option remember; if m=0 then [0] elif m=1 then [0,1] else [op(z(m-1)),op(z(m-2))]; fi; end; z(12);
    M:=19; S[0]:=`0`; S[1]:=`01`; for n from 2 to M do S[n]:=cat(S[n-1], S[n-2]); od:
    t0:=S[M]: l:=length(t0); for i from 1 to l do lprint(i-1,substring(t0,i..i)); od: # N. J. A. Sloane, Nov 01 2006
  • Mathematica
    Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 10] (* Robert G. Wilson v, Mar 05 2005 *)
    Flatten[Nest[{#, #[[1]]} &, {0, 1}, 9]] (* IWABUCHI Yu(u)ki, Oct 23 2013 *)
    Table[Floor[(n + 2) #] - Floor[(n + 1) #], {n, 0, 120}] &[2 - GoldenRatio] (* Michael De Vlieger, Aug 15 2016 *)
    SubstitutionSystem[{0->{0,1},1->{0}},{0},{10}][[1]] (* Harvey P. Dale, Dec 20 2021 *)
  • PARI
    a(n)=my(k=2);while(fibonacci(k)<=n,k++);while(n>1,while(fibonacci(k--)>n,); n-=fibonacci(k)); n==1 \\ Charles R Greathouse IV, Feb 03 2014
    
  • PARI
    M3849=[2,2,1,0]/*L(k),S(k),L(k-1),S(k-1)*/; A003849(n)={while(n>M3849[1],M3849=vecextract(M3849,[1,2,1,2])+[M3849[3],M3849[4]<M. F. Hasler, Apr 07 2021
    
  • Python
    def fib(n):
        """Return the concatenation of A003849(0..F-1) where F is the smallest
           Fibonacci number > n, so that the result contains a(n) at index n."""
        a, b = '10'
        while len(b)<=n:
            a, b = b, b + a
        return b # Robert FERREOL, Apr 15 2016, edited by M. F. Hasler, Apr 07 2021
    
  • Python
    from math import isqrt
    def A003849(n): return 2-(n+2+isqrt(m:=5*(n+2)**2)>>1)+(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = floor((n+2)*r) - floor((n+1)*r) where r=phi/(1+2*phi) and phi is the Golden Ratio. - Benoit Cloitre, Nov 10 2003
a(n) = A003714(n) mod 2 = A014417(n) mod 2. - Philippe Deléham, Jan 04 2004
The first formula by Cloitre is just one of an infinite family of formulas. Using phi^2=1+phi, it follows that r=phi/(1+2*phi)=2-phi. Then from floor(-x)=-floor(x)-1 for non-integer x, it follows that a(n)=2-A014675(n)=2-(floor((n+2)* phi)-floor((n+1)*phi)). - Michel Dekking, Aug 27 2016
a(n) = 1 - A096270(n+1), i.e., A096270 is the complement of this sequence. - A.H.M. Smeets, Mar 31 2024

Extensions

Revised by N. J. A. Sloane, Jul 03 2012

A007066 a(n) = 1 + ceiling((n-1)*phi^2), phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 4, 7, 9, 12, 15, 17, 20, 22, 25, 28, 30, 33, 36, 38, 41, 43, 46, 49, 51, 54, 56, 59, 62, 64, 67, 70, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 98, 101, 104, 106, 109, 111, 114, 117, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 145, 148, 151, 153, 156, 159, 161, 164, 166
Offset: 1

Views

Author

Keywords

Comments

First column of dual Wythoff array, A126714.
Positions of 0's in A189479.
Skala (2016) asks if this sequence also gives the positions of the 0's in A283310. - N. J. A. Sloane, Mar 06 2017
Upper Wythoff sequence plus 2, when shifted by 1. - Michel Dekking, Aug 26 2019
In the Fokkink-Joshi paper, this sequence is the Cloitre (0,1,2,3)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n, else a(n) = a(n-1)+3. - Michael De Vlieger, Jul 30 2025

References

  • Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.
  • D. R. Morrison, "A Stolarsky array of Wythoff pairs," in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064437.
Apart from initial terms, same as A026356 (Cloitre (0,2,2,3)-hiccup sequence).
First column of A126714.
Complement is (essentially) A026355.
Equals 1 + A004957, also n + A004956.
First differences give A076662.
Complement of A099267. [Gerald Hillier, Dec 19 2008]
Cf. A193214 (primes). Except for the first term equal to A001950 + 2.
Cf. A026352 (Cloitre (1,1,2,3)-hiccup sequence), A064437 (Cloitre (0,1,3,2)-hiccup sequence).

Programs

  • Haskell
    a007066 n = a007066_list !! (n-1)
    a007066_list = 1 : f 2 [1] where
       f x zs@(z:_) = y : f (x + 1) (y : zs) where
         y = if x `elem` zs then z + 2 else z + 3
    -- Reinhard Zumkeller, Sep 26 2014, Sep 18 2011
    
  • Maple
    Digits := 100: t := (1+sqrt(5))/2; A007066 := proc(n) if n <= 1 then 1 else floor(1+t*floor(t*(n-1)+1)); fi; end;
  • Mathematica
    t = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0, 1}}] &, {0}, 6] (*A189479*)
    Flatten[Position[t, 0]] (*A007066*)
    Flatten[Position[t, 1]] (*A099267*)
    With[{grs=GoldenRatio^2},Table[1+Ceiling[grs(n-1)],{n,70}]] (* Harvey P. Dale, Jun 24 2011 *)
  • Python
    from math import isqrt
    def A007066(n): return (n+1+isqrt(5*(n-1)**2)>>1)+n if n > 1 else 1 # Chai Wah Wu, Aug 25 2022

Formula

a(n) = floor(1+phi*floor(phi*(n-1)+1)), phi=(1+sqrt(5))/2, n >= 2.
a(1)=1; for n>1, a(n)=a(n-1)+2 if n is already in the sequence, a(n)=a(n-1)+3 otherwise. - Benoit Cloitre, Mar 06 2003
a(n+1) = floor(n*phi^2) + 2, n>=1. - Michel Dekking, Aug 26 2019

A060144 a(n) = floor(n/(1+tau)), or equivalently floor(n/(tau)^2), where tau is the golden ratio (A001622).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 29
Offset: 0

Views

Author

Clark Kimberling, Mar 05 2001

Keywords

Comments

The RUNS transform of this sequence appears to be yet another version of the Fibonacci word (cf. A001468, A001950, A076662). - N. J. A. Sloane, Mar 29 2025

Crossrefs

Programs

  • Haskell
    a060144 n = a060144_list !! n
    a060144_list = 0 : 0 : scanl1 (+) a003849_list
    -- Reinhard Zumkeller, Apr 07 2012
    
  • Maple
    A060144 := proc(n)
        (3+sqrt(5))/2 ;
        floor(n/%) ;
    end proc:
    seq(A060144(n),n=0..100) ; # R. J. Mathar, Jul 29 2021
  • Mathematica
    Table[Floor[n/GoldenRatio^2], {n, 0, 100}] (* T. D. Noe, Dec 10 2011 *)
  • PARI
    { default(realprecision, 10); f=2/(sqrt(5) + 3); for (n=0, 1000, write("b060144.txt", n, " ", floor(n*f)); ) } \\ Harry J. Smith, Jul 02 2009
    
  • Python
    from math import isqrt
    def A060144(n): return (n<<1)-1-(n+isqrt(5*n**2)>>1) if n else 0 # Chai Wah Wu, Aug 09 2022

Formula

For n>0, a(n)=n reduced modulo A005206(n). - Benoit Cloitre, Jan 01 2003
Let n' = n-1. Above formula is better as a(n') = n'-A005206(n'). Also a(n') = A005206(A005206(n'-1)). Also a(n'+1) = n'-a(n')-a(n'-a(n')), with a(0) = 0. - Frank Ruskey, Dec 09 2011
a(n+1) = n - A005206(n). - Reinhard Zumkeller, Apr 07 2012
a(n) = floor(n*A132338). - R. J. Mathar, Jul 29 2021

A085357 Common residues of binomial(3n,n)/(2n+1) modulo 2: relates ternary trees (A001764) to the infinite Fibonacci word (A003849).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 25 2003

Keywords

Comments

The n-th runs of ones is given by: 3 - A003849(n) (infinite Fibonacci word) = A076662(n+1). Runs of zeros are given by: A085358 and are also directly related to the Fibonacci sequence. Coefficients of A(x)^3 are found in A085359.
a(n) = 0 iff some binary digit of n is 1 while the corresponding binary digit of 3*n is 0. - Robert Israel, Jul 12 2016
The Run Length Transform of [0,1,0,0,0,...], A063524, the characteristic function of 1. (See A227349 for the definition). - Antti Karttunen, Oct 15 2016

Crossrefs

Cf. A001764 (ternary trees), A085358 (runs of zeros), A076662 (runs of ones), A003849 (infinite Fibonacci word), A085359 (A(x)^3).
Absolute values of A132971.

Programs

  • Magma
    [Binomial(3*n,n) mod 2: n in [0..100]]; // Vincenzo Librandi, Jul 09 2016
    
  • Maple
    f:= proc(n) local L,Lp;
      L:= convert(n,base,2);
      Lp:= convert(3*n,base,2);
      if has(L-Lp[1..nops(L)],1) then 0 else 1 fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Jul 12 2016
  • Mathematica
    Table[Mod[Binomial[3 n, n], 2], {n, 0, 120}] (* Michael De Vlieger, Jul 08 2016 *)
  • PARI
    A085357(n) = !bitand(n,n<<1); \\ Antti Karttunen, Aug 22 2019
    
  • Python
    def A085357(n): return int(not n&(n<<1)) # Chai Wah Wu, Jun 25 2025

Formula

G.f.: 1 + x*A(x)^3 = A(x) (Mod 2); a(n) = A001764(n) (Mod 2).
a(n) = binomial(3n, n) (mod 2). Characteristic function of Fibbinary numbers (i.e. a(n)=1 iff n is in A003714). - Benoit Cloitre, Nov 15 2003
Recurrence: a(0) = 1, a(2n) = a(4n+1) = a(n), a(4n+3) = 0.
a(n-2) = A000256(n)(mod 2), for n>2. - John M. Campbell, Jul 08 2016
a(n) = A000621(n+1)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A000625(n)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A008966(A005940(1+n)). [Follows from the Run Length Transform interpretation, see also A277010.] - Antti Karttunen, Oct 15 2016
a(n) = abs(A132971(n)) = abs(A008683(A005940(1+n))). - Antti Karttunen, May 30 2017

A282162 Difference sequence of the upper Wythoff sequence, A001950, with 2 prepended.

Original entry on oeis.org

2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3
Offset: 0

Views

Author

Clark Kimberling, Feb 09 2017

Keywords

Comments

Another version of the infinite Fibonacci word (see Formula). Start with 2, apply 2->23, 3->233, and take the limit.

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio^2; Table[Floor[(n + 1) r] - Floor[n r], {n, 0, 120}]
  • Python
    from math import isqrt
    def A282162(n): return (n+3+isqrt(m:=5*(n+1)**2)>>1)-(n+isqrt(m-10*n-5)>>1) # Chai Wah Wu, May 05 2025

Formula

a(n) = 1 + A001468(n).

A107789 Trajectory of 2 under evenly many applications of the morphism 1 -> 2, 2 -> 114, 3 -> 4, 4 -> 233.

Original entry on oeis.org

2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3
Offset: 0

Views

Author

Roger L. Bagula, Jun 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    s[1] = {2}; s[2] = {1, 1, 4}; s[3] = {4}; s[4] = {2, 3, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[9]

Formula

1->{2}, 2->{1, 1, 4}, 3->{4}, 4->{2, 3, 3}

Extensions

Edited by N. J. A. Sloane, Jul 26 2012

A108173 Let beta = A058265. Sequence gives a(n) = 1 + ceiling((n-1)*beta^2).

Original entry on oeis.org

1, 5, 8, 12, 15, 18, 22, 25, 29, 32, 35, 39, 42, 45, 49, 52, 56, 59, 62, 66, 69, 73, 76, 79, 83, 86, 89, 93, 96, 100, 103, 106, 110, 113, 117, 120, 123, 127, 130, 133, 137, 140, 144, 147, 150, 154, 157, 160, 164, 167, 171, 174, 177, 181, 184, 188, 191, 194, 198, 201
Offset: 1

Views

Author

Roger L. Bagula, Jun 13 2005

Keywords

Comments

Tribonacci version of A007066 using positive real Pisot root of x^3-x^2-x-1.

Crossrefs

Programs

  • Mathematica
    NSolve[x^3 - x^2 - x - 1 == 0, x] beta = 1.8392867552141612 a[n_] = 1 + Ceiling[(n - 1)*beta^2] (* A007066 like*) aa = Table[a[n], {n, 1, 100}] (*A076662 like*) b = Table[a[n] - a[n - 1], {n, 2, Length[aa]}] F[1] = 2; F[n_] := F[n] = F[n - 1] + b[[n]] (* A000195 like *) c = Table[F[n], {n, 1, Length[b] - 1}]

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007

A108165 a(n)=a(n-1) +A108173(n+1) -A108173(n).

Original entry on oeis.org

2, 5, 9, 12, 15, 19, 22, 26, 29, 32, 36, 39, 42, 46, 49, 53, 56, 59, 63, 66, 70, 73, 76, 80, 83, 86, 90, 93, 97, 100, 103, 107, 110, 114, 117, 120, 124, 127, 130, 134, 137, 141, 144, 147, 151, 154, 157, 161, 164, 168, 171, 174, 178, 181, 185, 188, 191, 195, 198, 201
Offset: 1

Views

Author

Roger L. Bagula, Jun 13 2005

Keywords

Comments

Tribonacci version of A001950 using beta, the positive real root of x^3-x^2-x-1, as the constant.

Crossrefs

Programs

  • Mathematica
    NSolve[x^3 - x^2 - x - 1 = 0, x] beta = 1.8392867552141612 a[n_] = 1 + Ceiling[(n - 1)*beta^2] (* A007066-like*) aa = Table[a[n], {n, 1, 100}] (*A076662-like*) b = Table[a[n] - a[n - 1], {n, 2, Length[aa]}] F[1] = 2; F[n_] := F[n] = F[n - 1] + b[[n]] (* A000195-like*) c = Table[F[n], {n, 1, Length[b] - 1}]

Extensions

Partially edited by N. J. A. Sloane, May 04 2007
Correction of definition and offset by R. J. Mathar, Mar 12 2012
Showing 1-10 of 10 results.