cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A014957 Positive integers k that divide 16^k - 1.

Original entry on oeis.org

1, 3, 5, 9, 15, 21, 25, 27, 39, 45, 55, 63, 75, 81, 105, 117, 125, 135, 147, 155, 165, 171, 189, 195, 205, 225, 243, 273, 275, 315, 333, 351, 375, 405, 441, 465, 495, 507, 513, 525, 567, 585, 605, 609, 615, 625, 657, 675, 729, 735, 775, 819, 825, 855, 903
Offset: 1

Views

Author

Keywords

Comments

Also, positive integers k that divide A014931(k).

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[1000],PowerMod[16,#,#]==1&]] (* Harvey P. Dale, Jun 12 2024 *)
  • Python
    A014957_list = [n for n in range(1,10**6) if n == 1 or pow(16,n,n) == 1] # Chai Wah Wu, Mar 25 2021

Extensions

Edited by Max Alekseyev, Sep 10 2011

A068383 Numbers k such that k divides 11^k - 1.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 12, 16, 18, 20, 24, 25, 30, 32, 36, 40, 42, 48, 50, 54, 60, 64, 72, 80, 84, 90, 96, 100, 108, 114, 120, 125, 126, 128, 144, 150, 156, 160, 162, 168, 180, 192, 200, 210, 216, 222, 228, 240, 244, 250, 252, 256, 270, 272, 288, 294, 300, 312, 320
Offset: 1

Views

Author

Benoit Cloitre, Mar 05 2002

Keywords

Comments

For all k, 2^k, 10^k, 2 * 3^k and 10 * 3^k are in the sequence.

Examples

			11^5 - 1 = 161050, which is divisible by 5, so 5 is in the sequence.
11^6 - 1 = 1771560, which is divisible by 6, so 6 is in the sequence.
11^7 = 19487171 = 4 modulo 7, so 7 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[500], PowerMod[11, #, #] == 1 &]] (* Robert Price, Apr 04 2020 *)
  • PARI
    isok(n) = Mod(11, n)^n == Mod(1, n); \\ Michel Marcus, May 06 2016
    
  • Scala
    def powerMod(a: Int, b: Int, m: Int): Int = b match { case 1 => a % m; case n => a * powerMod(a, n - 1, m) % m }
    List(1) ++: (2 to 500).filter(k => powerMod(11, k, k) == 1) // Alonso del Arte, Apr 04 2020

A128356 Least number k > 1 (that is not the power of prime p) such that k divides (p+1)^k-1, where p = prime(n).

Original entry on oeis.org

20, 21, 1555, 889, 253, 2041, 5846759, 148305659, 1081, 279241, 9641, 950123, 33661, 63213709997, 583223, 3775349, 72707647, 149070763, 196932497, 5091481, 25760459, 14307947980741, 13861, 9362711, 376457, 132766545553, 63757
Offset: 1

Views

Author

Alexander Adamchuk, Mar 02 2007

Keywords

Comments

All listed terms have 2 distinct prime divisors. Most listed terms are semiprimes, except a(7) = 20231*17^2 and a(8) = 410819*19^2. p = prime(n) divides a(n). Quotients a(n)/prime(n) are listed in A128357 = {10, 7, 311, 127, 23, 157, 343927, ...}. a(15) = 583223 = 47*12409. a(16) = 3775349 = 53*71233.

Crossrefs

Programs

  • Mathematica
    (* This program is not suitable to compute a large number of terms *) a[n_] := For[p = Prime[n]; k = 2, True, k++, If[Length[FactorInteger[k]] == 2, If[Mod[PowerMod[p + 1, k, k] - 1, k] == 0, Print[k]; Return[k]]]]; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Oct 07 2013 *)

Extensions

Terms a(14) onwards from Max Alekseyev, Feb 08 2010

A128357 Quotients A128356(n)/prime(n).

Original entry on oeis.org

10, 7, 311, 127, 23, 157, 343927, 7805561, 47, 9629, 311, 25679, 821, 1470086279, 12409, 71233, 1232333, 2443783, 2939291, 71711, 352883, 181113265579, 167, 105199, 3881, 1314520253, 619, 20759, 117503, 1162660843, 1880415721, 263
Offset: 1

Views

Author

Alexander Adamchuk, Mar 02 2007, Mar 09 2007

Keywords

Comments

A128356 = {20, 21, 1555, 889, 253, 2041, 5846759, ...} = Least number k>1 (that is not the power of prime p) such that k divides (p+1)^k-1, where p = prime(n). Most listed terms are primes, except a(7) = 20231*17 and a(8) = 410819*19. a(15) = 12409. a(16) = 71233.
Note that all prime listed terms of {a(n)} coincide with terms of A128456 = {2, 7, 311, 127, 23, 157, 7563707819165039903, 75368484119, 47, 9629, 311, 25679, 821, ...} = least prime factor of ((p+1)^p - 1)/p^2, where p = prime(n).

Crossrefs

Cf. A128356 (least number k > 1 (that is not a power of prime p) such that k divides (p+1)^k-1, where p = prime(n)).
Cf. A128456 (least prime factor of ((p+1)^p - 1)/p^2, where p = prime(n)).

Extensions

Terms a(14) onwards from Max Alekseyev, Feb 08 2010

A177805 Numbers k such that k divides 15^k - 1.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 28, 32, 49, 56, 64, 98, 112, 128, 136, 196, 224, 256, 272, 343, 392, 448, 452, 512, 544, 686, 784, 812, 896, 904, 952, 1024, 1088, 1372, 1568, 1624, 1792, 1808, 1904, 2048, 2176, 2312, 2401, 2744, 3136, 3164, 3248, 3584, 3616, 3808, 4096
Offset: 1

Views

Author

Alexander Adamchuk, May 17 2010

Keywords

Comments

A000420 are the only odd terms of the sequence. - Robert Israel, Feb 25 2020

Crossrefs

Programs

A217468 Composite values of n such that 2^n == 2 (mod n*(n-1)).

Original entry on oeis.org

91625794219, 8796093022207, 1557609722332488343, 18216643597893471403
Offset: 1

Views

Author

V. Raman, Oct 04 2012

Keywords

Comments

No other terms below 2^64.
The next term is <= 25790417485109157029391019 = A019320(258). - Emmanuel Vantieghem, Dec 01 2014
Terms A019320(k) belongs to this sequence for k in A297412. - Max Alekseyev, Dec 29 2017

Examples

			a(1) = 91625794219 = (2^38 - 2^19 + 1)/3 = A019320(114).
a(2) = 8796093022207 = 2^43 - 1 = A019320(43).
		

Crossrefs

Intersection of A001567 and { 2*A014945(k) + 1 }.

Programs

A177807 Numbers k that divide 17^k - 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 54, 60, 64, 72, 78, 80, 84, 96, 100, 108, 116, 120, 126, 128, 144, 156, 160, 162, 168, 180, 192, 200, 216, 220, 232, 234, 240, 252, 256, 288, 294, 300, 312, 320, 324, 336, 342, 348, 360, 378, 384, 400, 420
Offset: 1

Views

Author

Alexander Adamchuk, May 17 2010

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Select[Range[420], PowerMod[17, #, #] == 1 &] (* Giovanni Resta, Jan 30 2020 *)

A333432 A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,  1,     1,  1,     1,  1, ...
  2, 0,  2,   3,  2,     5,  2,     7,  2, ...
  3, 0,  4,   9,  4,    25,  3,    49,  4, ...
  4, 0,  8,  21,  6,   125,  4,   343,  8, ...
  5, 0, 16,  27,  8,   625,  6,   889, 10, ...
  6, 0, 20,  63, 12,  1555,  8,  2359, 16, ...
  7, 0, 32,  81, 16,  3125,  9,  2401, 20, ...
  8, 0, 40, 147, 18,  7775, 12,  6223, 32, ...
  9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
		

Crossrefs

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=2 then `if`(n=1, 1, 0) else
            while nops(p(k)) 1 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
    Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)

A327840 Numbers m that divide 4^m + 3.

Original entry on oeis.org

1, 7, 16387, 4509253, 24265177, 42673920001, 103949349763, 12939780075073
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 27 2019

Keywords

Comments

Number of solutions < 10^9 to k^n == k-1 (mod n): 1 (if k = 1), 188 (if k = 2, see A006521), 5 (if k = 3, see A015973), 5 (if k = 4, see this sequence), 5 (if k = 5), 10 (if k = 6), 10 (if k = 7), 7 (if k = 8), 5 (if k = 9), 8 (if k = 10), 11 (if k = 11), 8 (if k = 12), 9 (if k = 13), 4 (if k = 14), 3 (if k = 15), 6 (if k = 16), 7 (if k = 17), 7 (if k = 18), ...
a(9) > 10^15. - Max Alekseyev, Nov 10 2022

Crossrefs

Solutions to k^n == 1-k (mod n): A006521 (k = 2), A015973 (k = 3), this sequence (k = 4), A123047 (k = 5), A327943 (k = 6).
Solutions to 4^n == k (mod n): A000079 (k = 0), A015950 (k = -1), A014945 (k = 1), A130421 (k = 2), this sequence (k = -3), A130422 (k = 3).

Programs

  • Magma
    [1] cat [n: n in [1..10^8] | Modexp(4,n,n) + 3 eq n];
    
  • Mathematica
    Select[Range[10^7], IntegerQ[(PowerMod[4, #, # ]+3)/# ]&] (* Metin Sariyar, Sep 28 2019 *)
  • PARI
    is(n)=Mod(4,n)^n==-3 \\ Charles R Greathouse IV, Sep 29 2019

Extensions

a(6)-a(7) from Giovanni Resta, Sep 29 2019
a(8) from Max Alekseyev, Nov 10 2022

A014959 Integers k such that k divides 22^k - 1.

Original entry on oeis.org

1, 3, 7, 9, 21, 27, 39, 49, 63, 81, 117, 147, 189, 243, 273, 343, 351, 441, 507, 567, 729, 819, 1029, 1053, 1143, 1323, 1521, 1701, 1911, 2187, 2401, 2457, 2943, 3081, 3087, 3159, 3429, 3549, 3969, 4401, 4563, 5103, 5733, 6561, 6591, 7203, 7371
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that n divides s(n), where s(1)=1, s(k)=s(k-1)+k*22^(k-1) (cf. A014940).

Crossrefs

Integers n such that n divides b^n - 1: A067945 (b=3), A014945 (b=4), A067946 (b=5), A014946 (b=6), A067947 (b=7), A014949 (b=8), A068382 (b=9), A014950 (b=10), A068383 (b=11), A014951 (b=12), A116621 (b=13), A014956 (b=14), A177805 (b=15), A014957 (b=16), A177807 (b=17), A128358 (b=18), A125000 (b=19), A128360 (b=20), A014960 (b=24).

Programs

  • Mathematica
    nxt[{n_,s_}]:={n+1,s+(n+1)*22^n}; Transpose[Select[NestList[nxt,{1,1},7500], Divisible[ Last[#],First[#]]&]][[1]] (* Harvey P. Dale, Jan 27 2015 *)

Extensions

Edited by Max Alekseyev, Nov 16 2019
Previous Showing 11-20 of 26 results. Next