A014957
Positive integers k that divide 16^k - 1.
Original entry on oeis.org
1, 3, 5, 9, 15, 21, 25, 27, 39, 45, 55, 63, 75, 81, 105, 117, 125, 135, 147, 155, 165, 171, 189, 195, 205, 225, 243, 273, 275, 315, 333, 351, 375, 405, 441, 465, 495, 507, 513, 525, 567, 585, 605, 609, 615, 625, 657, 675, 729, 735, 775, 819, 825, 855, 903
Offset: 1
Cf.
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A014956,
A177805,
A177807,
A128358,
A128360
-
Join[{1},Select[Range[1000],PowerMod[16,#,#]==1&]] (* Harvey P. Dale, Jun 12 2024 *)
-
A014957_list = [n for n in range(1,10**6) if n == 1 or pow(16,n,n) == 1] # Chai Wah Wu, Mar 25 2021
A068383
Numbers k such that k divides 11^k - 1.
Original entry on oeis.org
1, 2, 4, 5, 6, 8, 10, 12, 16, 18, 20, 24, 25, 30, 32, 36, 40, 42, 48, 50, 54, 60, 64, 72, 80, 84, 90, 96, 100, 108, 114, 120, 125, 126, 128, 144, 150, 156, 160, 162, 168, 180, 192, 200, 210, 216, 222, 228, 240, 244, 250, 252, 256, 270, 272, 288, 294, 300, 312, 320
Offset: 1
11^5 - 1 = 161050, which is divisible by 5, so 5 is in the sequence.
11^6 - 1 = 1771560, which is divisible by 6, so 6 is in the sequence.
11^7 = 19487171 = 4 modulo 7, so 7 is not in the sequence.
-
Join[{1}, Select[Range[500], PowerMod[11, #, #] == 1 &]] (* Robert Price, Apr 04 2020 *)
-
isok(n) = Mod(11, n)^n == Mod(1, n); \\ Michel Marcus, May 06 2016
-
def powerMod(a: Int, b: Int, m: Int): Int = b match { case 1 => a % m; case n => a * powerMod(a, n - 1, m) % m }
List(1) ++: (2 to 500).filter(k => powerMod(11, k, k) == 1) // Alonso del Arte, Apr 04 2020
A128356
Least number k > 1 (that is not the power of prime p) such that k divides (p+1)^k-1, where p = prime(n).
Original entry on oeis.org
20, 21, 1555, 889, 253, 2041, 5846759, 148305659, 1081, 279241, 9641, 950123, 33661, 63213709997, 583223, 3775349, 72707647, 149070763, 196932497, 5091481, 25760459, 14307947980741, 13861, 9362711, 376457, 132766545553, 63757
Offset: 1
-
(* This program is not suitable to compute a large number of terms *) a[n_] := For[p = Prime[n]; k = 2, True, k++, If[Length[FactorInteger[k]] == 2, If[Mod[PowerMod[p + 1, k, k] - 1, k] == 0, Print[k]; Return[k]]]]; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Oct 07 2013 *)
Original entry on oeis.org
10, 7, 311, 127, 23, 157, 343927, 7805561, 47, 9629, 311, 25679, 821, 1470086279, 12409, 71233, 1232333, 2443783, 2939291, 71711, 352883, 181113265579, 167, 105199, 3881, 1314520253, 619, 20759, 117503, 1162660843, 1880415721, 263
Offset: 1
Cf.
A128356 (least number k > 1 (that is not a power of prime p) such that k divides (p+1)^k-1, where p = prime(n)).
Cf.
A128456 (least prime factor of ((p+1)^p - 1)/p^2, where p = prime(n)).
A177805
Numbers k such that k divides 15^k - 1.
Original entry on oeis.org
1, 2, 4, 7, 8, 14, 16, 28, 32, 49, 56, 64, 98, 112, 128, 136, 196, 224, 256, 272, 343, 392, 448, 452, 512, 544, 686, 784, 812, 896, 904, 952, 1024, 1088, 1372, 1568, 1624, 1792, 1808, 1904, 2048, 2176, 2312, 2401, 2744, 3136, 3164, 3248, 3584, 3616, 3808, 4096
Offset: 1
A217468
Composite values of n such that 2^n == 2 (mod n*(n-1)).
Original entry on oeis.org
91625794219, 8796093022207, 1557609722332488343, 18216643597893471403
Offset: 1
a(1) = 91625794219 = (2^38 - 2^19 + 1)/3 = A019320(114).
a(2) = 8796093022207 = 2^43 - 1 = A019320(43).
A177807
Numbers k that divide 17^k - 1.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 54, 60, 64, 72, 78, 80, 84, 96, 100, 108, 116, 120, 126, 128, 144, 156, 160, 162, 168, 180, 192, 200, 216, 220, 232, 234, 240, 252, 256, 288, 294, 300, 312, 320, 324, 336, 342, 348, 360, 378, 384, 400, 420
Offset: 1
Cf.
A014960,
A014956,
A014957,
A014951,
A014949,
A014946,
A014945,
A067945,
A128358,
A128360,
A177805.
-
{1}~Join~Select[Range[420], PowerMod[17, #, #] == 1 &] (* Giovanni Resta, Jan 30 2020 *)
A333432
A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 0, 2, 3, 2, 5, 2, 7, 2, ...
3, 0, 4, 9, 4, 25, 3, 49, 4, ...
4, 0, 8, 21, 6, 125, 4, 343, 8, ...
5, 0, 16, 27, 8, 625, 6, 889, 10, ...
6, 0, 20, 63, 12, 1555, 8, 2359, 16, ...
7, 0, 32, 81, 16, 3125, 9, 2401, 20, ...
8, 0, 40, 147, 18, 7775, 12, 6223, 32, ...
9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
Columns k=1-20 give:
A000027,
A063524,
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A333506,
A128360.
-
A:= proc() local h, p; p:= proc() [1] end;
proc(n, k) if k=2 then `if`(n=1, 1, 0) else
while nops(p(k)) 1 do od;
p(k):= [p(k)[], h]
od; p(k)[n] fi
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Mar 24 2020
-
A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
A327840
Numbers m that divide 4^m + 3.
Original entry on oeis.org
1, 7, 16387, 4509253, 24265177, 42673920001, 103949349763, 12939780075073
Offset: 1
-
[1] cat [n: n in [1..10^8] | Modexp(4,n,n) + 3 eq n];
-
Select[Range[10^7], IntegerQ[(PowerMod[4, #, # ]+3)/# ]&] (* Metin Sariyar, Sep 28 2019 *)
-
is(n)=Mod(4,n)^n==-3 \\ Charles R Greathouse IV, Sep 29 2019
A014959
Integers k such that k divides 22^k - 1.
Original entry on oeis.org
1, 3, 7, 9, 21, 27, 39, 49, 63, 81, 117, 147, 189, 243, 273, 343, 351, 441, 507, 567, 729, 819, 1029, 1053, 1143, 1323, 1521, 1701, 1911, 2187, 2401, 2457, 2943, 3081, 3087, 3159, 3429, 3549, 3969, 4401, 4563, 5103, 5733, 6561, 6591, 7203, 7371
Offset: 1
Integers n such that n divides b^n - 1:
A067945 (b=3),
A014945 (b=4),
A067946 (b=5),
A014946 (b=6),
A067947 (b=7),
A014949 (b=8),
A068382 (b=9),
A014950 (b=10),
A068383 (b=11),
A014951 (b=12),
A116621 (b=13),
A014956 (b=14),
A177805 (b=15),
A014957 (b=16),
A177807 (b=17),
A128358 (b=18),
A125000 (b=19),
A128360 (b=20),
A014960 (b=24).
-
nxt[{n_,s_}]:={n+1,s+(n+1)*22^n}; Transpose[Select[NestList[nxt,{1,1},7500], Divisible[ Last[#],First[#]]&]][[1]] (* Harvey P. Dale, Jan 27 2015 *)
Comments