cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A172350 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 6, 1, 1, 11, 66, 11, 1, 1, 41, 451, 451, 41, 1, 1, 96, 3936, 7216, 3936, 96, 1, 1, 301, 28896, 197456, 197456, 28896, 301, 1, 1, 781, 235081, 3761296, 14019376, 3761296, 235081, 781, 1, 1, 2286, 1785366, 89565861, 781665696
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Feb 01 2010

Keywords

Comments

Start from the generalized Fibonacci sequence A015440 and its partial products c(n) = 1, 1, 1, 6, 66, 2706, 259776, 78192576, 61068401856, 139602366642816... Then t(n,k) = c(n)/(c(k)*c(n-k)).
Row sums are 1, 2, 3, 14, 90, 986, 15282, 453308, 22013694, 1746038420, 222562828116,...

Examples

			1;
1, 1;
1, 1, 1;
1, 6, 6, 1;
1, 11, 66, 11, 1;
1, 41, 451, 451, 41, 1;
1, 96, 3936, 7216, 3936, 96, 1;
1, 301, 28896, 197456, 197456, 28896, 301, 1;
1, 781, 235081, 3761296, 14019376, 3761296, 235081, 781, 1;
1, 2286, 1785366, 89565861, 781665696, 781665696, 89565861, 1785366, 2286, 1;
1, 6191, 14152626, 1842200151, 50409295041, 118031520096, 50409295041, 1842200151, 14152626, 6191, 1;
		

Crossrefs

Cf. A010048 (m=1), A015109 (m=2), A172349 (m=4), A172351 (m=6).

Programs

  • Mathematica
    Clear[f, c, a, t];
    f[0, a_] := 0; f[1, a_] := 1;
    f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
    c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
    t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
    Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
    Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]

A367453 Decimal expansion of (-1 + sqrt(21))/10 = 1/A222134.

Original entry on oeis.org

3, 5, 8, 2, 5, 7, 5, 6, 9, 4, 9, 5, 5, 8, 4, 0, 0, 0, 6, 5, 8, 8, 0, 4, 7, 1, 9, 3, 7, 2, 8, 0, 0, 8, 4, 8, 8, 9, 8, 4, 4, 5, 6, 5, 7, 6, 7, 6, 7, 9, 7, 1, 9, 0, 2, 6, 0, 7, 2, 4, 2, 1, 2, 3, 9, 0, 6, 8, 6, 8, 4, 2, 5, 5, 4, 7, 7, 7, 0, 8, 8, 6, 6, 0, 4, 3, 6, 1, 5, 5, 9, 4, 9, 3, 4, 4, 5, 0, 3
Offset: 0

Views

Author

Wolfdieter Lang, Nov 20 2023

Keywords

Comments

Positive root of the minimal polynomial x^2 + 1/5 - 1/5. The negative root is -(1/5)*A222134 = -0.558257569...
c^n = A(-n) + B(-n)*phi21, and A(n) = S21(n+1) - S21(n) = A365824(n), with phi21 = A222134, and B(n) = S21(n) = A015440(n-1), where S21(n) = sqrt(-5)^(n-1)*S(n-1, 1/sqrt(-5)), with the Chebyshev polynomials {S(n, x)} (see A049310).
The formula for negative indices of S is S(-1, 0) = 0 and S(-n, x) = -S(n-2, x) for n >= 2.

Examples

			c = 0.3582575694955840006588047193728008488984456...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(Sqrt[21]-1)/10,10,100]] (* Paolo Xausa, Nov 21 2023 *)
  • PARI
    \\ Works in v2.13 and higher; n = 100 decimal places
    my(n=100); digits(floor(10^(n-1)*(quadgen(84)-1))) \\ Michal Paulovic, Nov 20 2023

Formula

c = 1/phi21 = (1/5)*(1 - phi21), with phi21 = (1 + sqrt(21))/2 = A222134, hence an algebraic number of the real quadratic number field Q(sqrt(21)) but not an algebraic integer like phi24.
Equals (A010477-1)/10. - R. J. Mathar, Nov 21 2023
Equals 2*A222135/10. - Hugo Pfoertner, Mar 21 2024

A085487 a(n) = p^n + q^n, p = (1 + sqrt(21))/2, q = (1 - sqrt(21))/2.

Original entry on oeis.org

1, 11, 16, 71, 151, 506, 1261, 3791, 10096, 29051, 79531, 224786, 622441, 1746371, 4858576, 13590431, 37883311, 105835466, 295252021, 824429351, 2300689456, 6422836211, 17926283491, 50040464546, 139671882001, 389874204731, 1088233614736
Offset: 1

Views

Author

Gary W. Adamson, Jul 02 2003

Keywords

Comments

p + q = 1, p*q = -5, p - q = sqrt(21).
The Lucas sequence V(1,-5) apart from the initial term a(0) = 2. - Peter Bala, Jun 23 2015

Examples

			a(5) = 151 = p^5 + q^5, with p = 2.79128...; q = -1.79128...
		

References

  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", Wiley, 2001, p. 471.

Crossrefs

Cf. A015440.

Programs

  • Magma
    I:=[ 1,11]; [n le 2 select I[n] else Self(n-1)+5*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
  • Mathematica
    CoefficientList[Series[(10 x + 1) / (1 - x - 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 20 2013 *)
  • Maxima
    a(n):=n*sum((binomial(k,n-k)*1^(2*k-n)*(5)^(n-k))/k,k,1,n); /* Dmitry Kruchinin, May 16 2011 */
    
  • Sage
    [lucas_number2(n,1,-5) for n in range(1, 11)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (10*x^2+x)/(1-x-5*x^2).
a(n) = n*sum(k=1..n, (C(k,n-k)*1^(2*k-n)*(5)^(n-k))/k). - Dmitry Kruchinin, May 16 2011
a(n) = a(n-1) + 5a(n-2), n>1.
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x + 21*x^2))/2 )^n. - Peter Bala, Jun 23 2015

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.

A305838 Triangle read by rows: T(0,0)= 1; T(n,k)= T(n-1,k) + 5*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 5, 1, 10, 1, 15, 25, 1, 20, 75, 1, 25, 150, 125, 1, 30, 250, 500, 1, 35, 375, 1250, 625, 1, 40, 525, 2500, 3125, 1, 45, 700, 4375, 9375, 3125, 1, 50, 900, 7000, 21875, 18750, 1, 55, 1125, 10500, 43750, 65625, 15625, 1, 60, 1375, 15000, 78750, 175000, 109375
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013612 ((1+5*x)^n). The coefficients in the expansion of 1/(1-x-5x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.7913327..., when n approaches infinity. The row sums are A015440 (generalized Fibonacci numbers).

Examples

			Triangle begins:
  1;
  1;
  1,  5;
  1, 10;
  1, 15,   25;
  1, 20,   75;
  1, 25,  150,   125;
  1, 30,  250,   500;
  1, 35,  375,  1250,    625;
  1, 40,  525,  2500,   3125;
  1, 45,  700,  4375,   9375,    3125;
  1, 50,  900,  7000,  21875,   18750;
  1, 55, 1125, 10500,  43750,   65625,   15625;
  1, 60, 1375, 15000,  78750,  175000,  109375;
  1, 65, 1650, 20625, 131250,  393750,  437500,   78125;
  1, 70, 1950, 27500, 206250,  787500, 1312500,  625000;
  1, 75, 2275, 35750, 309375, 1443750, 3281250, 2812500,  390625;
  1, 80, 2625, 45500, 446875, 2475000, 7218750, 9375000, 3515625;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 380, 381.

Crossrefs

Row sums give A015440.
Cf. A000012 (column 0), A008587 (column 1), A123296 (column 2), A141480 (column 3).
Cf. A013612.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0,  t[n - 1, k] + 5 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1/(1 - t*x - 5*t^2).
Previous Showing 21-25 of 25 results.