cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 53 results. Next

A330297 Number of labeled simple graphs covering n vertices with exactly two automorphisms, or with exactly n!/2 graphs obtainable by permuting the vertices.

Original entry on oeis.org

0, 0, 1, 3, 24, 540, 13320
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2019

Keywords

Comments

These are graphs with exactly one involution and no other symmetries.

Examples

			The a(4) = 24 graphs:
  {12,13,24}  {12,13,14,23}
  {12,13,34}  {12,13,14,24}
  {12,14,23}  {12,13,14,34}
  {12,14,34}  {12,13,23,24}
  {12,23,34}  {12,13,23,34}
  {12,24,34}  {12,14,23,24}
  {13,14,23}  {12,14,24,34}
  {13,14,24}  {12,23,24,34}
  {13,23,24}  {13,14,23,34}
  {13,24,34}  {13,14,24,34}
  {14,23,24}  {13,23,24,34}
  {14,23,34}  {14,23,24,34}
		

Crossrefs

The non-covering version is A330345.
The unlabeled version is A330346 (not A241454).
Covering simple graphs are A006129.
Covering graphs with exactly one automorphism are A330343.
Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), and A330346 (unlabeled covering).

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[graprms[#]]==n!/2&]],{n,0,5}]

Formula

a(n) = n!/2 * A330346(n).

A340263 T(n, k) = [x^k] ((1-x)^(2^n) + 2^(-n)*((2^n-1)*(x-1)^(2^n) + (x+1)^(2^n)))/2. Irregular triangle read by rows, for n >= 0 and 0 <= k <= 2^n.

Original entry on oeis.org

1, 1, -1, 1, 1, -3, 6, -3, 1, 1, -7, 28, -49, 70, -49, 28, -7, 1, 1, -15, 120, -525, 1820, -4095, 8008, -10725, 12870, -10725, 8008, -4095, 1820, -525, 120, -15, 1
Offset: 0

Views

Author

Peter Luschny, Jan 06 2021

Keywords

Comments

Conjecture: for n >= 1 the polynomials are irreducible.

Examples

			Polynomials begin:
[0] 1;
[1] x^2 - x + 1;
[2] x^4 - 3*x^3 + 6*x^2 - 3*x + 1;
[3] x^8 - 7*x^7 + 28*x^6 - 49*x^5 + 70*x^4 - 49*x^3 + 28*x^2 - 7*x + 1;
Triangle begins:
[0] [1]
[1] [1, -1, 1]
[2] [1, -3, 6, -3, 1]
[3] [1, -7, 28, -49, 70, -49, 28, -7, 1]
[4] [1, -15, 120, -525, 1820, -4095, 8008, -10725, 12870, -10725, 8008, -4095, 1820, -525, 120, -15, 1]
		

Crossrefs

Row sums are 2^(2^n - n - 1) = A016031(n-1).
Central terms of the rows are A037293(n) for n >= 2.
Cf. A340312.

Programs

  • Maple
    A340263_row := proc(n) local a, b;
    if n = 0 then return [1] fi;
    b := n -> add(binomial(2^n, 2*k)*x^(2*k), k = 0..2^n);
    a := n -> x*mul(b(k), k = 0..n);
    expand(b(n) - (2^n-1)*a(n-1));
    [seq(coeff(%, x, j), j = 0..2^n)] end:
    for n from 0 to 5 do A340263_row(n) od;
    # Alternatively:
    CoeffList := p -> [op(PolynomialTools:-CoefficientList(p, x))]:
    Tpoly := n -> ((1-x)^(2^n) + 2^(-n)*((2^n-1)*(x-1)^(2^n) + (x + 1)^(2^n)))/2:
    seq(print(CoeffList(Tpoly(n))), n=0..5); # Peter Luschny, Feb 03 2021
  • SageMath
    def A340263():
        a, b, c = 1, 1, 1
        yield [1]
        while True:
            c *= 2
            a *= b
            b = sum(binomial(c, 2 * k) * x ^ (2 * k) for k in range(c + 1))
            yield ((b - (c - 1) * x * a)).list()
    A340263_row = A340263()
    for _ in range(6):
        print(next(A340263_row))

Formula

Let p_n(x) = b(n) - (2^n-1)*a(n-1), b(n) = Sum_{k=0..2^n} binomial(2^n, 2*k)* x^(2*k), and a(n) = x*Product_{k=0..n} b(k). Then T(n, k) = [x^k] p_n(x).

Extensions

Shorter name by Peter Luschny, Feb 03 2021

A368731 Number of non-isomorphic n-element sets of nonempty subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 10, 97, 2160, 126862, 21485262, 11105374322, 18109358131513, 95465831661532570, 1660400673336788987026, 96929369602251313489896310, 19268528295096123543660356281600, 13203875101002459910158494602665950757, 31517691852305548841992346407978317698725021
Offset: 0

Views

Author

Gus Wiseman, Jan 07 2024

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 10 set-systems:
  {{1},{2},{3}}
  {{1},{2},{1,2}}
  {{1},{2},{1,3}}
  {{1},{2},{1,2,3}}
  {{1},{1,2},{1,3}}
  {{1},{1,2},{2,3}}
  {{1},{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

The case of graphs is A001434, labeled A116508.
Labeled version is A136556, covering A054780, binomial transform of A367916.
The case of labeled covering graphs is A367863, binomial transform A367862.
These include the set-systems ranked by A367917.
The covering case is A368186, for graphs A006649, connected A057500.
Requiring all edges to be singletons or pairs gives A368598.
A003465 counts covers with any number of edges, unlabeled A055621.
A046165 counts minimal covers, ranks A309326.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,n}],{n}]]],{n,0,4}]
  • PARI
    a(n) = polcoef(G(n, n), n) \\ G defined in A368186. - Andrew Howroyd, Jan 11 2024

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 11 2024

A330057 Number of set-systems covering n vertices with no singletons or endpoints.

Original entry on oeis.org

1, 0, 0, 5, 1703, 66954642, 144115175199102143, 1329227995784915808340204290157341181, 226156424291633194186662080095093568664788471116325389572604136316742486364
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. A singleton is an edge of size 1. An endpoint is a vertex appearing only once (degree 1).

Examples

			The a(3) = 5 set-systems:
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
  {{1,2},{2,3},{1,2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The version for non-isomorphic set-systems is A330055 (by weight).
The non-covering version is A330056.
Set-systems with no singletons are A016031.
Set-systems with no endpoints are A330059.
Non-isomorphic set-systems with no singletons are A306005 (by weight).
Non-isomorphic set-systems with no endpoints are A330054 (by weight).
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
  • PARI
    \\ here b(n) is A330056(n).
    AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )}
    b(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))}
    a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*b(n-k))} \\ Andrew Howroyd, Jan 16 2023

Formula

Binomial transform is A330056.

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023

A368928 Triangle read by rows where T(n,k) is the number of labeled loop-graphs with n vertices and n edges, k of which are loops.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 9, 9, 1, 15, 80, 90, 24, 1, 252, 1050, 1200, 450, 50, 1, 5005, 18018, 20475, 9100, 1575, 90, 1, 116280, 379848, 427329, 209475, 46550, 4410, 147, 1, 3108105, 9472320, 10548720, 5503680, 1433250, 183456, 10584, 224, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2024

Keywords

Examples

			Triangle begins:
     1
     0     1
     0     2     1
     1     9     9     1
    15    80    90    24     1
   252  1050  1200   450    50     1
  5005 18018 20475  9100  1575    90     1
The loop-graphs counted in row n = 3 (loops shown as singletons):
  {12}{13}{23}  {1}{12}{13}  {1}{2}{12}  {1}{2}{3}
                {1}{12}{23}  {1}{2}{13}
                {1}{13}{23}  {1}{2}{23}
                {2}{12}{13}  {1}{3}{12}
                {2}{12}{23}  {1}{3}{13}
                {2}{13}{23}  {1}{3}{23}
                {3}{12}{13}  {2}{3}{12}
                {3}{12}{23}  {2}{3}{13}
                {3}{13}{23}  {2}{3}{23}
		

Crossrefs

Row sums are A014068, unlabeled version A000666.
Column k = 0 is A116508, covering version A367863.
The covering case is A368597.
The unlabeled version is A368836.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {1,2}],{n}],Count[#,{_}]==k&]],{n,0,5},{k,0,n}]
    T[n_,k_]:= Binomial[n,k]*Binomial[Binomial[n,2],n-k]; Table[T[n,k],{n,0,8},{k,0,n}]// Flatten (* Stefano Spezia, Jan 14 2024 *)
  • PARI
    T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k) \\ Andrew Howroyd, Jan 14 2024

Formula

T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k).

A306522 Number of simple directed cycles in the binary de Bruijn graphs of order n.

Original entry on oeis.org

3, 6, 19, 179, 30176, 1202267287
Offset: 1

Views

Author

Guillaume Marçais, Feb 21 2019

Keywords

Comments

The numbers are computed empirically by the C++ program below. For n=7, the value is > 144*10^15 (the number of Hamiltonian cycles, A016031).

Examples

			For n=1, the cycles are (0), (1) and (0, 1).
For n=2, they are (00), (00, 01, 10), (00, 01, 11, 10), (01, 10), (01, 11, 10), (11).
		

Crossrefs

Cf. A016031.

Programs

  • Python
    import networkx as nx
    def deBruijn(n): return nx.MultiDiGraph(((0, 0), (0, 0))) if n==0 else nx.line_graph(deBruijn(n-1))
    def A306522(n): return sum(1 for c in nx.simple_cycles(deBruijn(n))) # Pontus von Brömssen, Jun 28 2021

A317586 Number of circular binary words of length n having the maximum possible number of distinct blocks of length floor(log_2 n) and floor(log_2 n)+1.

Original entry on oeis.org

2, 1, 2, 1, 2, 3, 4, 2, 4, 3, 6, 13, 12, 20, 32, 16, 32, 36, 68, 141, 242, 407, 600, 898, 1440, 1812, 2000, 2480, 2176, 2816, 4096, 2048, 4096, 3840, 7040, 13744, 28272, 54196, 88608, 160082, 295624, 553395, 940878, 1457197, 2234864, 3302752, 4975168, 7459376
Offset: 1

Views

Author

Jeffrey Shallit, Aug 01 2018

Keywords

Comments

A circular binary word (a.k.a. "necklace") can be viewed as a representative of the equivalence class under cyclic shift.
The words counted by this sequence have 2^i distinct blocks of length i = floor(log_2 n) and n distinct blocks of length i+1.
This sequence counts a certain natural generalization of de Bruijn words, which are cyclic words of length 2^n containing all n-bit blocks as subwords.

Examples

			For n = 6 the 3 possibilities are {000111, 001011, 001101}.  Each contains all 4 blocks of length 2, and 6 distinct blocks of length 3 (when considered circularly).
		

Crossrefs

Cf. A016031, which gives the value of this sequence evaluated at powers of 2.
Cf. A318687.

Extensions

Terms a(33)-a(48) provided by Štěpán Holub

A330343 Number of labeled fully chiral simple graphs (also called identity or asymmetric graphs) covering n vertices.

Original entry on oeis.org

1, 0, 0, 0, 0, 5760, 766080, 149022720, 48990251520, 28928242022400, 32147584690636800, 69035206021583155200
Offset: 1

Views

Author

Gus Wiseman, Dec 12 2019

Keywords

Comments

In a fully chiral graph, every permutation of the vertices gives a different representative, so the only automorphism is the identity.

Crossrefs

The unlabeled version is A003400.
Identity trees are A004111.
Covering simple graphs are A006129.
Full chiral integer partitions are A330228.
Fully chiral factorizations are A330235.
Fully chiral set-systems are A330229 (labeled covering), A330282 (labeled), A330294 (unlabeled), A330295 (unlabeled covering).
Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), A330346 (unlabeled covering), A241454 (unlabeled connected).

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[graprms[#]]==n!&]],{n,5}] (* brute force, not for computation *)

Formula

a(n) = n! * A003400(n).

A058342 De Bruijn sequence of order 6: every window of size 6, [a(j),a(j+1),...,a(j+5)], shows a different 6-tuple, for 0 <= j <= 63.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Leon J. Tate (leonjtate(AT)earthlink.net), Dec 14 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.6.12.

Crossrefs

Cf. A016031. A169671 gives the earliest such sequence.

A173009 Expansion of o.g.f. x*(1 - x + x^2)/(1 -3*x +x^2 +3*x^3 -2*x^4).

Original entry on oeis.org

0, 1, 2, 6, 13, 29, 60, 124, 251, 507, 1018, 2042, 4089, 8185, 16376, 32760, 65527, 131063, 262134, 524278, 1048565, 2097141, 4194292, 8388596, 16777203, 33554419, 67108850, 134217714, 268435441, 536870897
Offset: 1

Views

Author

Thomas Wieder, Feb 07 2010

Keywords

Comments

The mean value m(n) = Sum_{k=0..(2^n -n-1)} k*p(n,k) of the distribution function p(n,k) = binomial(2^n-n-1, k)/2^(2^n-n-1) is 0., 0.5, 2., 5.5, 13., 28.5, 60., 123.5, 251., 506.5, 1018., 2041.5, 4089., 8184.5... We set a(n) = round(m(n)).
The half-integer sequence h(n) = 0, 1/2, 2, 11/2, 13, 57/2, 60, 247/2, 251, 1013/2, 1018, 4083/2, 4089, 16369/2, 16376, 65519/2, 65527, ... is the binomial transform of 0, 1/2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

Crossrefs

Programs

  • Magma
    [Round((2^n -n-1)/2): n in [1..40]]; // G. C. Greubel, Feb 20 2021
  • Maple
    A173009:= n-> round((2^n -n-1)/2); seq(A173009(n), n=1..40); # G. C. Greubel, Feb 20 2021
  • Mathematica
    Table[Ceiling[(2^n-n-1)/2],{n,30}] (* or *) LinearRecurrence[{3,-1,-3,2},{0,1,2,6},30] (* Harvey P. Dale, Nov 16 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 2,-3,-1,3]^(n-1)*[0;1;2;6])[1,1] \\ Charles R Greathouse IV, Apr 18 2020
    
  • Sage
    [round((2^n -n-1)/2) for n in (1..40)] # G. C. Greubel, Feb 20 2021
    

Formula

G.f.: x*(1 - x + x^2)/(1 -3*x +x^2 +3*x^3 -2*x^4).
m(n) = (1/4)*2^n - 1/2 + m*(n-1) with m(1)=0 and a(n) = round(m(n)).
a(1)=0, a(2)=1, a(3)=2, a(4)=6, a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +2*a(n-4). - Harvey P. Dale, Nov 16 2011
a(n) = round(A000295(n)/2). - G. C. Greubel, Feb 20 2021
Previous Showing 31-40 of 53 results. Next