cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A191707 Dispersion of A016873, (numbers >1 and congruent to 1, 2, 3, or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 5, 3, 7, 10, 4, 9, 13, 15, 6, 12, 17, 19, 20, 8, 16, 22, 24, 26, 25, 11, 21, 28, 31, 33, 32, 30, 14, 27, 36, 39, 42, 41, 38, 35, 18, 34, 46, 49, 53, 52, 48, 44, 40, 23, 43, 58, 62, 67, 66, 61, 56, 51, 45, 29, 54, 73, 78, 84, 83, 77, 71, 64, 57, 50, 37
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1....2....3....4....6
5....7....9....12...16
10...13...17...22...28
15...19...24...31...39
20...26...33...42...53
25...32...41...52...66
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=3; c2=4; d=6; m[n_]:=If[Mod[n,4]==0,1,0];
    f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
    Table[f[n], {n, 1, 30}]  (* A047201 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191707 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191707  *)

A191708 Dispersion of A047202, (numbers >1 and congruent to 0, 2, 3, or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 6, 3, 8, 11, 4, 10, 14, 16, 5, 13, 18, 20, 21, 7, 17, 23, 25, 27, 26, 9, 22, 29, 32, 34, 33, 31, 12, 28, 37, 40, 43, 42, 39, 36, 15, 35, 47, 50, 54, 53, 49, 45, 41, 19, 44, 59, 63, 68, 67, 62, 57, 52, 46, 24, 55, 74, 79, 85, 84, 78, 72, 65, 58, 51, 30
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1....2....3....4....5
6....8....10...13...17
11...14...18...23...29
16...20...25...32...40
21...27...34...43...54
26...33...42...53...67
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=3; c2=4; d=5; m[n_]:=If[Mod[n,4]==0,1,0];
    f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
    Table[f[n], {n, 1, 30}]  (* A047202 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191708 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191708  *)

A191709 Dispersion of A047202, (numbers >1 and congruent to 0, 1, 3, or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 5, 4, 7, 8, 6, 10, 12, 11, 9, 14, 16, 17, 15, 13, 19, 21, 23, 22, 20, 18, 25, 28, 30, 29, 27, 26, 24, 33, 36, 39, 38, 35, 32, 34, 31, 43, 46, 50, 49, 45, 41, 37, 44, 40, 55, 59, 64, 63, 58, 53, 48, 42, 56, 51, 70, 75, 81, 80, 74, 68, 61, 54, 47, 71
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1....3....5....8....11
2....4....6....9....13
7....10...14...19...25
12...16...21...28...36
17...23...30...39...50
22...29...38...49...63
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=3; b=4; c2=5; d=6; m[n_]:=If[Mod[n,4]==0,1,0];
    f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
    Table[f[n], {n, 1, 30}]  (* A047207 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191709 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191709  *)

A191710 Dispersion of A032763, (numbers >1 and congruent to 0, 1, 2, or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 6, 7, 11, 13, 9, 10, 15, 17, 18, 12, 14, 20, 22, 24, 23, 16, 19, 26, 29, 31, 30, 28, 21, 25, 34, 37, 40, 39, 36, 33, 27, 32, 44, 47, 51, 50, 46, 42, 38, 35, 41, 56, 60, 65, 64, 59, 54, 49, 43, 45, 52, 71, 76, 82, 81, 75, 69, 62, 55, 48, 57
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1....2....4....6....9
3....5....7....10...14
8....11...15...20...26
13...17...22...29...37
18...24...31...40...51
23...30...39...50...64
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=4; c2=5; d=6; m[n_]:=If[Mod[n,4]==0,1,0];
    f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
    Table[f[n], {n, 1, 30}]  (* A032763 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191710 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191710  *)

A191711 Dispersion of A001068, (numbers >1 and congruent to 0, 1, 2, or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 5, 8, 12, 14, 7, 11, 16, 18, 19, 10, 15, 21, 23, 25, 24, 13, 20, 27, 30, 32, 31, 29, 17, 26, 35, 38, 41, 40, 37, 34, 22, 33, 45, 48, 52, 51, 47, 43, 39, 28, 42, 57, 61, 66, 65, 60, 55, 50, 44, 36, 53, 72, 77, 83, 82, 76, 70, 63, 56, 49, 46
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1....2....3....5....7
4....6....8....11...15
9....12...16...21...27
14...18...23...30...38
19...25...32...41...52
24...31...40...51...65
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=3; c2=5; d=6; m[n_]:=If[Mod[n,4]==0,1,0];
    f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
    Table[f[n], {n, 1, 30}]  (* A001068 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191711 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191711  *)

A082105 Array A(n, k) = (k*n)^2 + 4*(k*n) + 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 13, 13, 1, 1, 22, 33, 22, 1, 1, 33, 61, 61, 33, 1, 1, 46, 97, 118, 97, 46, 1, 1, 61, 141, 193, 193, 141, 61, 1, 1, 78, 193, 286, 321, 286, 193, 78, 1, 1, 97, 253, 397, 481, 481, 397, 253, 97, 1, 1, 118, 321, 526, 673, 726, 673, 526, 321, 118, 1
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Examples

			Array, A(n, k), begins as:
  1,  1,   1,   1,   1,   1, ... A000012;
  1,  6,  13,  22,  33,  46, ... A028872;
  1, 13,  33,  61,  97, 141, ... A082109;
  1, 22,  61, 118, 193, 286, ... ;
  1, 33,  97, 193, 321, 481, ... ;
  1, 46, 141, 286, 481, 726, ... ;
Triangle, T(n, k), begins as:
  1;
  1,  1;
  1,  6,   1;
  1, 13,  13,   1;
  1, 22,  33,  22,   1;
  1, 33,  61,  61,  33,   1;
  1, 46,  97, 118,  97,  46,   1;
  1, 61, 141, 193, 193, 141,  61,  1;
  1, 78, 193, 286, 321, 286, 193, 78,  1;
		

Crossrefs

Programs

  • Magma
    [(k*(n-k))^2 + 4*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    T[n_, k_]:= (k*(n-k))^2 + 4*(k*(n-k)) + 1;
    Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2022 *)
  • SageMath
    def A082105(n,k): return (k*(n-k))^2 + 4*(k*(n-k)) + 1
    flatten([[A082105(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 22 2022

Formula

A(n, k) = (k*n)^2 + 4*(k*n) + 1 (square array).
A(n, n) = T(2*n, n) = A082106(n) (main diagonal).
T(n, k) = A(n-k, k) (number triangle).
Sum_{k=0..n} T(n, k) = A082107(n) (diagonal sums).
T(n, n-1) = A028872(n-1), n >= 1.
T(n, n-2) = A082109(n-2), n >= 2.
From G. C. Greubel, Dec 22 2022: (Start)
Sum_{k=0..n} (-1)^k * T(n, k) = ((1+(-1)^n)/2)*A016897(n-1).
T(2*n+1, n+1) = A047673(n+1), n >= 0.
T(n, n-k) = T(n, k). (End)

A213260 p(5n+4) where p(k) = number of partitions of k = A000041(k).

Original entry on oeis.org

5, 30, 135, 490, 1575, 4565, 12310, 31185, 75175, 173525, 386155, 831820, 1741630, 3554345, 7089500, 13848650, 26543660, 49995925, 92669720, 169229875, 304801365, 541946240, 952050665, 1653668665, 2841940500, 4835271870, 8149040695, 13610949895, 22540654445, 37027355200, 60356673280, 97662728555, 156919475295
Offset: 0

Views

Author

N. J. A. Sloane, Jun 07 2012

Keywords

Comments

It is known that a(n) is divisible by 5 (see A071734).

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[5n+4],{n,0,40}] (* Harvey P. Dale, May 30 2013 *)
  • PARI
    a(n) = numbpart(5*n+4); \\ Michel Marcus, Jan 07 2015
    
  • Python
    from sympy.functions import partition
    def a(n): return partition(5*n+4)
    print([a(n) for n in range(33)]) # Michael S. Branicky, May 30 2021

Formula

a(n) = A000041(A016897(n)). - Omar E. Pol, Jan 18 2013

A288913 a(n) = Lucas(4*n + 3).

Original entry on oeis.org

4, 29, 199, 1364, 9349, 64079, 439204, 3010349, 20633239, 141422324, 969323029, 6643838879, 45537549124, 312119004989, 2139295485799, 14662949395604, 100501350283429, 688846502588399, 4721424167835364, 32361122672259149, 221806434537978679, 1520283919093591604
Offset: 0

Views

Author

Bruno Berselli, Jun 19 2017

Keywords

Comments

a(n) mod 4 gives A101000.

Crossrefs

Cf. A033891: fourth quadrisection of A000045.
Partial sums are in A081007 (after 0).
Positive terms of A098149, and subsequence of A001350, A002878, A016897, A093960, A068397.
Quadrisection of A000032: A056854 (first), A056914 (second), A246453 (third, without 11), this sequence (fourth).

Programs

  • Magma
    [Lucas(4*n + 3): n in [0..30]]; // G. C. Greubel, Dec 22 2017
    
  • Mathematica
    LucasL[4 Range[0, 21] + 3]
    LinearRecurrence[{7,-1}, {4,29}, 30] (* G. C. Greubel, Dec 22 2017 *)
  • PARI
    Vec((4 + x)/(1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(4*n + 3)
    print([a(n) for n in range(22)]) # Michael S. Branicky, Apr 29 2021
  • Sage
    def L():
        x, y = -1, 4
        while True:
            yield y
            x, y = y, 7*y - x
    r = L(); [next(r) for  in (0..21)] # _Peter Luschny, Jun 20 2017
    

Formula

G.f.: (4 + x)/(1 - 7*x + x^2).
a(n) = 7*a(n-1) - a(n-2) for n>1, with a(0)=4, a(1)=29.
a(n) = ((sqrt(5) + 1)^(4*n + 3) - (sqrt(5) - 1)^(4*n + 3))/(8*16^n).
a(n) = Fibonacci(4*n+4) + Fibonacci(4*n+2).
a(n) = 4*A004187(n+1) + A004187(n).
a(n) = 5*A003482(n) + 4 = 5*A081016(n) - 1.
a(n) = A002878(2*n+1) = A093960(2*n+3) = A001350(4*n+3) = A068397(4*n+3).
a(n+1)*a(n+k) - a(n)*a(n+k+1) = 15*Fibonacci(4*k). Example: for k=6, a(n+1)*a(n+6) - a(n)*a(n+7) = 15*Fibonacci(24) = 695520.

A308744 Decimal expansion of BesselI(4/5,2/5)/BesselI(-1/5,2/5).

Original entry on oeis.org

2, 4, 3, 2, 9, 4, 8, 2, 7, 1, 3, 9, 1, 6, 6, 6, 3, 9, 7, 7, 2, 9, 9, 5, 2, 3, 6, 3, 2, 1, 0, 9, 2, 0, 1, 5, 4, 6, 4, 9, 9, 1, 1, 3, 2, 0, 1, 2, 5, 7, 0, 1, 2, 7, 1, 1, 1, 5, 7, 7, 5, 8, 1, 6, 3, 9, 7, 3, 0, 9, 8, 9, 8, 1, 5, 4, 2, 1, 1, 1, 5, 9, 0, 1, 0, 9, 0, 6, 3, 6, 2, 4, 8, 1, 7, 8, 1, 1, 1, 8, 6, 7, 6, 9, 0, 0, 5, 2, 0, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 21 2019

Keywords

Examples

			0.243294827139166639772995236321092015464991132...
		

Crossrefs

Cf. A016897 (continued fraction), A298243, A308739, A308740, A308741, A308742, A308743.

Programs

  • Mathematica
    RealDigits[BesselI[4/5, 2/5]/BesselI[-1/5, 2/5], 10, 110] [[1]]
  • PARI
    besseli(4/5,2/5)/besseli(-1/5,2/5) \\ Charles R Greathouse IV, Oct 23 2023

Formula

Equals 1/(4 + 1/(9 + 1/(14 + 1/(19 + 1/(24 + 1/(29 + 1/(34 + 1/(39 + 1/(44 + 1/(49 + ...)))))))))).

A335365 Numbers that are unreachable by the process of starting from 1 and adding 5 and/or multiplying by 3.

Original entry on oeis.org

2, 4, 5, 7, 10, 12, 15, 17, 20, 22, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285
Offset: 1

Views

Author

Alonso del Arte, Jun 03 2020

Keywords

Comments

Start with 1. Add 5 or multiply by 3. Then either add 5 or multiply by 3, and so on and so forth. Following both branches at each step, we can create a tree like this:
1
................../ \..................
6 3
11......../ \........18 8......../ \........9
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 33 23 54 13 24 14 27
21 48 38 99 28 69 59 162 18 39 29 72 19 42 32 81
According to Haverbeke (2019), some numbers, like 13, are reachable by this process in at least one way. Other numbers, like 15, are completely unreachable.
In fact, almost all positive integers that are not multiples of 5 are reachable, and all multiples of 5 (A008587) are unreachable.
The latter assertion is proven easily enough by taking note of the powers of 3 modulo 5: 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 2, ... (A070352).
As for the former assertion, it is enough to note that 26, 27, 28 and 29 are reachable. Given 5k + r, with k > 4 and r one of 1, 2, 3, 4, start with the solution for 25 + r and then, k - 5 times, add 5.
More precisely the sequence consists of all multiples of 5, numbers less than 25 congruent to 2 (mod 5), and 4. - M. F. Hasler, Jun 05 2020

Examples

			Starting with 1, either adding 5 or multiplying by 3 results in a number greater than 2, so 2 is unreachable and therefore in the sequence.
Starting with 1, multiplying by 3 gives 3, proving 3 is reachable and therefore not in the sequence.
		

References

  • Marijn Haverbeke, Eloquent JavaScript, 3rd Ed. San Francisco (2019): No Starch, p. 51.

Crossrefs

Cf. A008587 (subset), A070352, A335392.
Subsets of the complement: A000244, A016861, A016873 (except for first five terms), A016885, A016897 (except for 4).

Programs

  • JavaScript
    // See Haverbeke (2019).
    
  • Mathematica
    LinearRecurrence[{2,-1},{2,4,5,7,10,12,15,17,20,22,25,30},70] (* Harvey P. Dale, Apr 01 2023 *)
  • PARI
    {is(n)=!(n%5&& !while(n>4, n%3|| is(n/3)|| break (n=1); n-=5)&& n%2==1)} \\ Using exhaustive search, for illustration. - M. F. Hasler, Jun 05 2020
    
  • PARI
    select( {is(n)=n%5==0|| (n<23&&(n%5==2||n==4))}, [1..199]) \\ Much more efficient. - M. F. Hasler, Jun 05 2020
    
  • PARI
    Vec(x*(2 - x^2 + x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 + 2*x^11) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Jun 07 2020
  • Scala
    // Based on Haverbeke (2019)
    def find153Sol(n: Int): List[Int] = {
      def recur153(curr: Int, history: List[Int]): List[Int] = {
        if (curr == n) history.drop(1) :+ n else if (curr > n) List() else {
          val add5Branch = recur153(curr + 5, history :+ curr)
          if (add5Branch.nonEmpty) add5Branch
              else recur153(curr * 3, history :+ curr)
        }
      }
      recur153(1, List(1))
    }
    (1 to 200).filter(find153Sol(_).isEmpty)
    

Formula

G.f.: (2*x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 + x^3 - x^2 + 2)*x/(x - 1)^2. - Alois P. Heinz, Jun 05 2020
From Colin Barker, Jun 07 2020: (Start)
a(n) = 2*a(n-1) - a(n-2) for n>12.
a(n) = 5*(n-6) for n>10.
(End)
Previous Showing 11-20 of 45 results. Next