cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A134934 a(n) = (14*n+1)^2.

Original entry on oeis.org

1, 225, 841, 1849, 3249, 5041, 7225, 9801, 12769, 16129, 19881, 24025, 28561, 33489, 38809, 44521, 50625, 57121, 64009, 71289, 78961, 87025, 95481, 104329, 113569, 123201, 133225, 143641, 154449, 165649, 177241, 189225, 201601, 214369, 227529, 241081
Offset: 0

Views

Author

Hans Isdahl, Jan 26 2008

Keywords

Comments

Number of rats in population after n years, starting with one rat at year 0 (see A016754 for more details).

Crossrefs

Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m=3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), this sequence (m=14).
Cf. A016754.

Programs

Formula

O.g.f.: (1+222*x+169*x^2)/(1-x)^3 = 169/(1-x) - 560/(1-x)^2 + 392/(1-x)^3. - R. J. Mathar, Jan 31 2008
a(n) = A016754(7*n).
E.g.f.: (1 + 224*x + 196*x^2)*exp(x). - G. C. Greubel, Dec 24 2022

A016924 a(n) = (6*n + 1)^4.

Original entry on oeis.org

1, 2401, 28561, 130321, 390625, 923521, 1874161, 3418801, 5764801, 9150625, 13845841, 20151121, 28398241, 38950081, 52200625, 68574961, 88529281, 112550881, 141158161, 174900625, 214358881, 260144641, 312900721, 373301041, 442050625, 519885601, 607573201, 705911761
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^4 = A016922(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(3, 1/6)/7776. (End)

A016925 a(n) = (6*n + 1)^5.

Original entry on oeis.org

1, 16807, 371293, 2476099, 9765625, 28629151, 69343957, 147008443, 282475249, 503284375, 844596301, 1350125107, 2073071593, 3077056399, 4437053125, 6240321451, 8587340257, 11592740743, 15386239549, 20113571875, 25937424601, 33038369407, 41615795893, 51888844699
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^5.
Sum_{n>=0} 1/a(n) = ((1-1/2^5)*(1-1/3^5)*zeta(5) + 11*(Pi/3)^5/(8*sqrt(3)))/2 (Štofka, 2013). (End)

A016926 a(n) = (6*n + 1)^6.

Original entry on oeis.org

1, 117649, 4826809, 47045881, 244140625, 887503681, 2565726409, 6321363049, 13841287201, 27680640625, 51520374361, 90458382169, 151334226289, 243087455521, 377149515625, 567869252041, 832972004929, 1194052296529, 1677100110841, 2313060765625, 3138428376721
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+1)^6: n in [0..40]]; // Vincenzo Librandi, May 04 2011
  • Mathematica
    (6*Range[0,20]+1)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,117649,4826809,47045881,244140625,887503681,2565726409},20] (* Harvey P. Dale, Aug 19 2019 *)

Formula

From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^6 = A016922(n)^3 = A016923(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(5, 1/6)/5598720. (End)

A016927 a(n) = (6*n + 1)^7.

Original entry on oeis.org

1, 823543, 62748517, 893871739, 6103515625, 27512614111, 94931877133, 271818611107, 678223072849, 1522435234375, 3142742836021, 6060711605323, 11047398519097, 19203908986159, 32057708828125, 51676101935731, 80798284478113, 122987386542487, 182803912081669
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+1)^7: n in [0..40]]; // Vincenzo Librandi, May 04 2011
  • Mathematica
    (6*Range[0,20]+1)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,823543,62748517,893871739,6103515625,27512614111,94931877133,271818611107},20] (* Harvey P. Dale, May 12 2015 *)

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Harvey P. Dale, May 12 2015
From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^7.
Sum_{n>=0} 1/a(n) = 301*Pi^7/(1049760*sqrt(3)) + 138811*zeta(7)/279936. (End)

A104777 Integer squares congruent to 1 mod 6.

Original entry on oeis.org

1, 25, 49, 121, 169, 289, 361, 529, 625, 841, 961, 1225, 1369, 1681, 1849, 2209, 2401, 2809, 3025, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6889, 7225, 7921, 8281, 9025, 9409, 10201, 10609, 11449, 11881, 12769, 13225, 14161, 14641, 15625, 16129
Offset: 1

Views

Author

Michael Somos, Mar 24 2005

Keywords

Comments

Exponents of powers of q in expansion of eta(q^24).
Odd squares not divisible by 3. - Reinhard Zumkeller, Nov 14 2015
From Peter Bala, Jan 03 2025: (Start)
Exponents of q in the expansion of q*Product_{n >= 1} (1 - q^(24*n))^5/(1 - q^(48*n))^2 = q - 5*q^(5^2) + 7*q^(7^2) - 11*q^(11^2) + 13*q^(13^2) - 17*q^(17^2) + 19*q^(19)^2 - + ... (a consequence of the quintuple product identity).
Also, exponents in the expansion of q*Product_{n >= 1} (1 - q^(48*n))^13 / ( (1 - q^(24*n))*(1 - q^(96*n)) )^5 = q + 5*q^(5^2) + 7*q^(7^2) + 11*q^(11^2) - 13*q^(13^2) - 17*q^(17^2) - 19*q^(19^2) - 23*q^(23^2) + + + + - - - - ... (see Oliver, Theorem 1.1). (End)

Examples

			eta(q^24) = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + ...
		

Crossrefs

Disjoint union of A016922 and A016970.

Programs

  • Haskell
    a104777 = (^ 2) . a007310  -- Reinhard Zumkeller, Nov 14 2015
  • Maple
    seq(9*(n-1/2)^2 + 1/4 + (-1)^n * (3*n - 3/2), n = 1 .. 100); # Robert Israel, Dec 12 2014
  • Mathematica
    Select[Range[130]^2,Mod[#,6]==1&] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,25,49,121,169},50] (* Harvey P. Dale, Mar 09 2017 *)
  • PARI
    {a(n) = (3*n - 1 - n%2)^2};
    

Formula

A033683(a(n)) = 1.
G.f.: ( -1-24*x-22*x^2-24*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Feb 20 2011
a(n) = A007310(n)^2 = 1 + 24*A001318(n-1).
a(n) = 9*n^2 - 9*n + 5/2 + (-1)^n * (3*n - 3/2). a(n+4) = 2*a(n+2) - a(n) + 72. - Robert Israel, Dec 12 2014
a(n) == 1 (mod 24). - Joerg Arndt, Jan 03 2017
Sum_{n>=1} 1/a(n) = Pi^2/9 (A100044). - Amiram Eldar, Dec 19 2020

A016928 a(n) = (6*n + 1)^8.

Original entry on oeis.org

1, 5764801, 815730721, 16983563041, 152587890625, 852891037441, 3512479453921, 11688200277601, 33232930569601, 83733937890625, 191707312997281, 406067677556641, 806460091894081, 1517108809906561, 2724905250390625, 4702525276151521, 7837433594376961
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^8 = A016922(n)^4 = A016924(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(7, 1/6)/8465264640. (End)

A016929 a(n) = (6*n + 1)^9.

Original entry on oeis.org

1, 40353607, 10604499373, 322687697779, 3814697265625, 26439622160671, 129961739795077, 502592611936843, 1628413597910449, 4605366583984375, 11694146092834141, 27206534396294947, 58871586708267913, 119851595982618319, 231616946283203125, 427929800129788411
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+1)^9: n in [0..25]]; // Vincenzo Librandi, May 04 2011
  • Mathematica
    (6*Range[0,20]+1)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,40353607,10604499373,322687697779,3814697265625,26439622160671,129961739795077,502592611936843,1628413597910449,4605366583984375},20] (* Harvey P. Dale, Mar 22 2015 *)

Formula

a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10). - Harvey P. Dale, Mar 22 2015
From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^9 = A016923(n)^3.
Sum_{n>=0} 1/a(n) = 15371*Pi^9/(529079040*sqrt(3)) + 5028751*zeta(9)/10077696. (End)

A016930 a(n) = (6*n + 1)^10.

Original entry on oeis.org

1, 282475249, 137858491849, 6131066257801, 95367431640625, 819628286980801, 4808584372417849, 21611482313284249, 79792266297612001, 253295162119140625, 713342911662882601, 1822837804551761449, 4297625829703557649, 9468276082626847201, 19687440434072265625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+1)^10: n in [0..25]]; // Vincenzo Librandi, May 04 2011
  • Mathematica
    (6 Range[0, 15] + 1)^10 (* Wesley Ivan Hurt, Jan 15 2022 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,282475249,137858491849,6131066257801,95367431640625,819628286980801,4808584372417849,21611482313284249,79792266297612001,253295162119140625,713342911662882601},20] (* Harvey P. Dale, Sep 05 2023 *)

Formula

From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^10 = A016922(n)^5 = A016925(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(9, 1/6)/21941965946880. (End)

A016931 a(n) = (6*n + 1)^11.

Original entry on oeis.org

1, 1977326743, 1792160394037, 116490258898219, 2384185791015625, 25408476896404831, 177917621779460413, 929293739471222707, 3909821048582988049, 13931233916552734375, 43513917611435838661, 122130132904968017083, 313726685568359708377, 747993810527520928879
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^11.
Sum_{n>=0} 1/a(n) = 1261501*Pi^11/(428554022400*sqrt(3)) + 181308931*zeta(11)/362797056. (End)
Previous Showing 11-20 of 24 results. Next